Search results
Found 9666 matches for
Unravelling the unusual signalling properties of the GABA(B) receptor.
GABA(B) receptors are the cornerstone receptors in the modulation of inhibitory signalling in the central nervous system and continue to be targets for the amelioration of a number of neuropsychiatric and neurological disorders. Unravelling the molecular identity of this receptor has spurred much research over the past five or so years and generated a renewed interest and excitement in the field. Many questions are being answered and lessons learnt, not only about GABA(B) receptor function but also about general mechanisms of G-protein-coupled receptor signalling. However, as questions are being answered as many new questions are being raised and many GABA(B)-related conundrums continue to remain unanswered. In this report, we review some of the most recent work in the area of GABA(B) receptor research. In particular, we focus our attentions on the emerging mechanisms thought to be important in GABA(B) receptor signalling and the growing complex of associated proteins that we consider to be part of the GABA(B) receptor "signalosome."
Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability.
GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. The dynamic control of the cell surface stability of GABA(B) receptors is likely to be of fundamental importance in the modulation of receptor signaling. Presently, however, this process is poorly understood. Here we demonstrate that GABA(B) receptors are remarkably stable at the plasma membrane showing little basal endocytosis in cultured cortical and hippocampal neurons. In addition, we show that exposure to baclofen, a well characterized GABA(B) receptor agonist, fails to enhance GABA(B) receptor endocytosis. Lack of receptor internalization in neurons correlates with an absence of agonist-induced phosphorylation and lack of arrestin recruitment in heterologous systems. We also demonstrate that chronic exposure to baclofen selectively promotes endocytosis-independent GABA(B) receptor degradation. The effect of baclofen can be attenuated by activation of cAMP-dependent protein kinase or co-stimulation of beta-adrenergic receptors. Furthermore, we show that increased degradation rates are correlated with reduced receptor phosphorylation at serine 892 in GABA(B)R2. Our results support a model in which GABA(B)R2 phosphorylation specifically stabilizes surface GABA(B) receptors in neurons. We propose that signaling pathways that regulate cAMP levels in neurons may have profound effects on the tonic synaptic inhibition by modulating the availability of GABA(B) receptors.
Identification of new candidate drugs in myelodysplastic syndromes with splicing factor mutations by transcriptional profiling and connectivity map analysis.
We sought to identify new candidate drugs for repurposing to myelodysplastic syndromes (MDS). Connectivity map analysis was performed on gene expression signatures generated from bone marrow CD34+ cells of splicing factor mutant MDS patients. Celastrol and Withaferin A (WA), two top-ranking compounds identified, markedly inhibited proliferation, arrested the cell cycle and induced apoptosis in leukaemia cells. These compounds also inhibited the viability of primary bone marrow MDS cells. We showed that Celastrol and WA inhibit interleukin-1 receptor-associated kinase 4-mediated nuclear factor kappa-light-chain-enhancer of activated B cells signalling activation in splicing factor mutant MDS and leukaemia cells. Celastrol and WA may represent novel candidate drugs for the treatment of MDS.
Distinct immune cell infiltration patterns in pancreatic ductal adenocarcinoma (PDAC) exhibit divergent immune cell selection and immunosuppressive mechanisms.
Pancreatic ductal adenocarcinoma has a dismal prognosis. A comprehensive analysis of single-cell multi-omic data from matched tumour-infiltrated CD45+ cells and peripheral blood in 12 patients, and two published datasets, reveals a complex immune infiltrate. Patients have either a myeloid-enriched or adaptive-enriched tumour microenvironment. Adaptive immune cell-enriched is intrinsically linked with highly distinct B and T cell clonal selection, diversification, and differentiation. Using TCR data, we see the largest clonal expansions in CD8 effector memory, senescent cells, and highly activated regulatory T cells which are induced within the tumour from naïve cells. We identify pathways that potentially lead to a suppressive microenvironment, including investigational targets TIGIT/PVR and SIRPA/CD47. Analysis of patients from the APACT clinical trial shows that myeloid enrichment had a shorter overall survival compared to those with adaptive cell enrichment. Strategies for rationale therapeutic development in this disease include boosting of B cell responses, targeting immunosuppressive macrophages, and specific Treg cell depletion approaches.
SCALABLE MULTIPLE NETWORK INFERENCE WITH THE JOINT GRAPHICAL HORSESHOE
Network models are useful tools for modelling complex associations. In statistical omics such models are increasingly popular for identifying and assessing functional relationships and pathways. If a Gaussian graphical model is assumed, conditional independence is determined by the nonzero entries of the inverse covariance (precision) matrix of the data. The Bayesian graphical horseshoe estimator provides a robust and flexible framework for precision matrix inference, as it introduces local, edge-specific parameters which prevent over-shrinkage of nonzero off-diagonal elements. However, its applicability is currently limited in statistical omics settings, which often involve high-dimensional data from multiple conditions that might share common structures. We propose: (i) a scalable expectation conditional maximisation (ECM) algorithm for the original graphical horseshoe and (ii) a novel joint graphical horseshoe estimator, which borrows information across multiple related networks to improve estimation. We show numerically that our single-network ECM approach is more scalable than the existing graphical horseshoe Gibbs implementation, while achieving the same level of accuracy. We also show that our joint-network proposal successfully leverages shared edge-specific information between networks while still retaining differences, outperforming state-of-the-art methods at any level of network similarity. Finally, we leverage our approach to clarify gene regulation activity within and across immune stimulation conditions in monocytes, and formulate hypotheses on the pathogenesis of immune-mediated diseases.
An isoform quantitative trait locus in SBNO2 links genetic susceptibility to Crohn's disease with defective antimicrobial activity.
Despite major advances in linking single genetic variants to single causal genes, the significance of genetic variation on transcript-level regulation of expression, transcript-specific functions, and relevance to human disease has been poorly investigated. Strawberry notch homolog 2 (SBNO2) is a candidate gene in a susceptibility locus with different variants associated with Crohn's disease and bone mineral density. The SBNO2 locus is also differentially methylated in Crohn's disease but the functional mechanisms are unknown. Here we show that the isoforms of SBNO2 are differentially regulated by lipopolysaccharide and IL-10. We identify Crohn's disease associated isoform quantitative trait loci that negatively regulate the expression of the noncanonical isoform 2 corresponding with the methylation signals at the isoform 2 promoter in IBD and CD. The two isoforms of SBNO2 drive differential gene networks with isoform 2 dominantly impacting antimicrobial activity in macrophages. Our data highlight the role of isoform quantitative trait loci to understand disease susceptibility and resolve underlying mechanisms of disease.
Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis
Summary While many disease-associated variants have been identified through genome-wide association studies, their downstream molecular consequences remain unclear. To identify these effects, we performed cis- and trans-expression quantitative trait locus (eQTL) analysis in blood from 31,684 individuals through the eQTLGen Consortium. We observed that cis -eQTLs can be detected for 88% of the studied genes, but that they have a different genetic architecture compared to disease-associated variants, limiting our ability to use cis -eQTLs to pinpoint causal genes within susceptibility loci. In contrast, trans-eQTLs (detected for 37% of 10,317 studied trait-associated variants) were more informative. Multiple unlinked variants, associated to the same complex trait, often converged on trans-genes that are known to play central roles in disease etiology. We observed the same when ascertaining the effect of polygenic scores calculated for 1,263 genome-wide association study (GWAS) traits. Expression levels of 13% of the studied genes correlated with polygenic scores, and many resulting genes are known to drive these traits.
A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease
A genome-wide survival analysis of 14,406 Alzheimer’s disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and fourteen novel loci associated with age at onset. LD score regression of 220 cell types implicated regulation of myeloid gene expression in AD risk. In particular, the minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability is enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affect the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function.
BCL11B-related disease: a single phenotypic entity?
Abstract Craniosynostosis (CRS), the premature fusion of sutures between the skull bones, is characterised by a long “tail” of rare genetic diagnoses. This means that pathogenic variants in many genes are responsible for a minority of cases, and identifying these disease genes and delineating the associated phenotype is extremely important for patient diagnosis and for genetic counselling of families. One such gene is BCL11B. Heterozygous pathogenic variants in BCL11B have been described as causative for two Mendelian phenotypes, but until recently the gene remained only marginally associated with CRS. We have carried out a systematic review of literature, providing evidence that BCL11B-related disease (BRD) should be regarded as a single phenotypic entity. Furthermore, we describe four new patients, all of whom presented with CRS, thus expanding the phenotype of BRD and highlighting CRS as an important diagnostic clue.
Natural Killer cells demonstrate distinct eQTL and transcriptome-wide disease associations, highlighting their role in autoimmunity.
Natural Killer cells are innate lymphocytes with central roles in immunosurveillance and are implicated in autoimmune pathogenesis. The degree to which regulatory variants affect Natural Killer cell gene expression is poorly understood. Here we perform expression quantitative trait locus mapping of negatively selected Natural Killer cells from a population of healthy Europeans (n = 245). We find a significant subset of genes demonstrate expression quantitative trait loci specific to Natural Killer cells and these are highly informative of human disease, in particular autoimmunity. A Natural Killer cell transcriptome-wide association study across five common autoimmune diseases identifies further novel associations at 27 genes. In addition to these cis observations, we find novel master-regulatory regions impacting expression of trans gene networks at regions including 19q13.4, the Killer cell Immunoglobulin-like Receptor region, GNLY, MC1R and UVSSA. Our findings provide new insights into the unique biology of Natural Killer cells, demonstrating markedly different expression quantitative trait loci from other immune cells, with implications for disease mechanisms.
Natural Killer cells demonstrate distinct eQTL and transcriptome-wide disease associations, highlighting their role in autoimmunity
Natural Killer (NK) cells are innate lymphocytes with central roles in immunosurveillance and are implicated in autoimmune pathogenesis. The degree to which regulatory variants affect NK gene expression is poorly understood. We performed expression quantitative trait locus (eQTL) mapping of negatively selected NK cells from a population of healthy Europeans (n=245). We find a significant subset of genes demonstrate eQTL specific to NK cells and these are highly informative of human disease, in particular autoimmunity. An NK cell transcriptome-wide association study (TWAS) across five common autoimmune diseases identified further novel associations at 27 genes. In addition to these cis observations, we find novel master-regulatory regions impacting expression of trans gene networks at regions including 19q13.4, the Killer cell Immunoglobulin-like Receptor (KIR) Region, GNLY and MC1R . Our findings provide new insights into the unique biology of NK cells, demonstrating markedly different eQTL from other immune cells, with implications for disease mechanisms.
A common NFKB1 variant detected through antibody analysis in UK Biobank predicts risk of infection and allergy.
Infectious agents contribute significantly to the global burden of diseases through both acute infection and their chronic sequelae. We leveraged the UK Biobank to identify genetic loci that influence humoral immune response to multiple infections. From 45 genome-wide association studies in 9,611 participants from UK Biobank, we identified NFKB1 as a locus associated with quantitative antibody responses to multiple pathogens, including those from the herpes, retro-, and polyoma-virus families. An insertion-deletion variant thought to affect NFKB1 expression (rs28362491), was mapped as the likely causal variant and could play a key role in regulation of the immune response. Using 121 infection- and inflammation-related traits in 487,297 UK Biobank participants, we show that the deletion allele was associated with an increased risk of infection from diverse pathogens but had a protective effect against allergic disease. We propose that altered expression of NFKB1, as a result of the deletion, modulates hematopoietic pathways and likely impacts cell survival, antibody production, and inflammation. Taken together, we show that disruptions to the tightly regulated immune processes may tip the balance between exacerbated immune responses and allergy, or increased risk of infection and impaired resolution of inflammation.