Search results
Found 9666 matches for
Epithelial-derived gasdermin D mediates nonlytic IL-1β release during experimental colitis.
Gasdermin D (GSDMD) induces pyroptosis via the pore-forming activity of its N-terminal domain, cleaved by activated caspases associated with the release of IL-1β. Here, we report a nonpyroptotic role of full-length GSDMD in guiding the release of IL-1β-containing small extracellular vesicles (sEVs) from intestinal epithelial cells (IECs). In response to caspase-8 inflammasome activation, GSDMD, chaperoned by Cdc37/Hsp90, recruits the E3 ligase, NEDD4, to catalyze polyubiquitination of pro-IL-1β, serving as a signal for cargo loading into secretory vesicles. GSDMD and IL-1β colocalize with the exosome markers CD63 and ALIX intracellularly, and GSDMD and NEDD4 are required for release of CD63+ sEVs containing IL-1β, GSDMD, NEDD4, and caspase-8. Importantly, increased expression of epithelial-derived GSDMD is observed both in patients with inflammatory bowel disease (IBD) and those with experimental colitis. While GSDMD-dependent release of IL-1β-containing sEVs is detected in cultured colonic explants from colitic mice, GSDMD deficiency substantially attenuates disease severity, implicating GSDMD-mediated release of IL-1β sEVs in the pathogenesis of intestinal inflammation, such as that observed in IBD.
Dual RNA sequencing reveals dendritic cell reprogramming in response to typhoidal Salmonella invasion.
Salmonella enterica represent a major disease burden worldwide. S. enterica serovar Typhi (S. Typhi) is responsible for potentially life-threatening Typhoid fever affecting 10.9 million people annually. While non-typhoidal Salmonella (NTS) serovars usually trigger self-limiting diarrhoea, invasive NTS bacteraemia is a growing public health challenge. Dendritic cells (DCs) are key professional antigen presenting cells of the human immune system. The ability of pathogenic bacteria to subvert DC functions and prevent T cell recognition contributes to their survival and dissemination within the host. Here, we adapted dual RNA-sequencing to define how different Salmonella pathovariants remodel their gene expression in tandem with that of infected DCs. We find DCs harness iron handling pathways to defend against invading Salmonellas, which S. Typhi is able to circumvent by mounting a robust response to nitrosative stress. In parallel, we uncover the alternative strategies invasive NTS employ to impair DC functions.
NOD2 and TLR2 Signal via TBK1 and PI31 to Direct Cross-Presentation and CD8 T Cell Responses.
NOD2 and TLR2 recognize components of bacterial cell wall peptidoglycan and direct defense against enteric pathogens. CD8+ T cells are important for immunity to such pathogens but how NOD2 and TLR2 induce antigen specific CD8+ T cell responses is unknown. Here, we define how these pattern recognition receptors (PRRs) signal in primary dendritic cells (DCs) to influence MHC class I antigen presentation. We show NOD2 and TLR2 phosphorylate PI31 via TBK1 following activation in DCs. PI31 interacts with TBK1 and Sec16A at endoplasmic reticulum exit sites (ERES), which positively regulates MHC class I peptide loading and immunoproteasome stability. Following NOD2 and TLR2 stimulation, depletion of PI31 or inhibition of TBK1 activity in vivo impairs DC cross-presentation and CD8+ T cell activation. DCs from Crohn's patients expressing NOD2 polymorphisms show dysregulated cross-presentation and CD8+ T cell responses. Our findings reveal unidentified mechanisms that underlie CD8+ T cell responses to bacteria in health and in Crohn's.
Intracellular immunization against HIV infection with an intracellular antibody that mimics HIV integrase binding to the cellular LEDGF protein.
Preventing the protein-protein interaction of the cellular chromatin binding protein Lens Epithelium-Derived Growth Factor (LEDGF) and human immunodeficiency virus (HIV) integrase is an important possible strategy for anti-viral treatment for AIDS. We have used Intracellular Antibody Capture technology to isolate a single VH antibody domain that binds to LEDGF. The crystal structure of the LEDGF-VH complex reveals that the single domain antibody mimics the effect of binding of HIV integrase to LEDGF which is crucial for HIV propagation. CD4-expressing T cell lines were constructed to constitutively express the LEDGF-binding VH and these cells showed interference with HIV viral replication, assayed by virus capsid protein p24 production. Therefore, pre-conditioning cells to express antibody fragments confers effective intracellular immunization for preventing chronic viral replication and can be a way to prevent HIV spread in infected patients. This raises the prospect that intracellular immunization strategies that focus on cellular components of viral integrase protein interactions can be used to combat the problems associated with latent HIV virus re-emergence in patients. New genome editing development, such as using CRISPR/cas9, offer the prospect intracellularly immunized T cells in HIV+ patients.
Interferon-Gamma-Producing CD8+ Tissue Resident Memory T Cells Are a Targetable Hallmark of Immune Checkpoint Inhibitor-Colitis.
BACKGROUND & AIMS: The pathogenesis of immune checkpoint inhibitor (ICI)-colitis remains incompletely understood. We sought to identify key cellular drivers of ICI-colitis and their similarities to idiopathic ulcerative colitis, and to determine potential novel therapeutic targets. METHODS: We used a cross-sectional approach to study patients with ICI-colitis, those receiving ICI without the development of colitis, idiopathic ulcerative colitis, and healthy controls. A subset of patients with ICI-colitis were studied longitudinally. We applied a range of methods, including multiparameter and spectral flow cytometry, spectral immunofluorescence microscopy, targeted gene panels, and bulk and single-cell RNA sequencing. RESULTS: We demonstrate CD8+ tissue resident memory T (TRM) cells are the dominant activated T cell subset in ICI-colitis. The pattern of gastrointestinal immunopathology is distinct from ulcerative colitis at both the immune and epithelial-signaling levels. CD8+ TRM cell activation correlates with clinical and endoscopic ICI-colitis severity. Single-cell RNA sequencing analysis confirms activated CD8+ TRM cells express high levels of transcripts for checkpoint inhibitors and interferon-gamma in ICI-colitis. We demonstrate similar findings in both anti-CTLA-4/PD-1 combination therapy and in anti-PD-1 inhibitor-associated colitis. On the basis of our data, we successfully targeted this pathway in a patient with refractory ICI-colitis, using the JAK inhibitor tofacitinib. CONCLUSIONS: Interferon gamma-producing CD8+ TRM cells are a pathological hallmark of ICI-colitis and a novel target for therapy.
Pathogenesis of Fistulating Crohn's Disease: A Review.
Sustained, transmural inflammation of the bowel wall may result in the development of a fistula in Crohn's disease (CD). Fistula formation is a recognized complication and cause of morbidity, occurring in 40% of patients with CD. Despite advanced treatment, one-third of patients experience recurrent fistulae. Development of targeting treatment for fistulae will be dependent on a more in depth understanding of its pathogenesis. Presently, pathogenesis of CD-associated fistulae remains poorly defined, in part due to the lack of accepted in vitro tissue models recapitulating the pathogenic cellular lesions linked to fistulae and limited in vivo models. This review provides a synthesis of the existing knowledge of the histopathological, immune, cellular, genetic, and microbial contributions to the pathogenesis of CD-associated fistulae including the widely accredited contribution of epithelial-to-mesenchymal transition, upregulation of matrix metalloproteinases, and overexpression of invasive molecules, resulting in tissue remodeling and subsequent fistula formation. We conclude by exploring how we might utilize advancing technologies to verify and broaden our current understanding while exploring novel causal pathways to provide further inroads to future therapeutic targets.
CD161 Defines a Functionally Distinct Subset of Pro-Inflammatory Natural Killer Cells.
CD161 is a C-type lectin-like receptor expressed on the majority of natural killer (NK) cells; however, the significance of CD161 expression on NK cells has not been comprehensively investigated. Recently, we found that CD161 expression identifies a transcriptional and innate functional phenotype that is shared across various T cell populations. Using mass cytometry and microarray experiments, we demonstrate that this functional phenotype extends to NK cells. CD161 marks NK cells that have retained the ability to respond to innate cytokines during their differentiation, and is lost upon cytomegalovirus-induced maturation in both healthy and human immunodeficiency virus (HIV)-infected patients. These pro-inflammatory NK cells are present in the inflamed lamina propria where they are enriched for integrin CD103 expression. Thus, CD161 expression identifies NK cells that may contribute to inflammatory disease pathogenesis and correlates with an innate responsiveness to cytokines in both T and NK cells.
Clonal analysis of Salmonella-specific effector T cells reveals serovar-specific and cross-reactive T cell responses.
To tackle the complexity of cross-reactive and pathogen-specific T cell responses against related Salmonella serovars, we used mass cytometry, unbiased single-cell cloning, live fluorescence barcoding, and T cell-receptor sequencing to reconstruct the Salmonella-specific repertoire of circulating effector CD4+ T cells, isolated from volunteers challenged with Salmonella enterica serovar Typhi (S. Typhi) or Salmonella Paratyphi A (S. Paratyphi). We describe the expansion of cross-reactive responses against distantly related Salmonella serovars and of clonotypes recognizing immunodominant antigens uniquely expressed by S. Typhi or S. Paratyphi A. In addition, single-amino acid variations in two immunodominant proteins, CdtB and PhoN, lead to the accumulation of T cells that do not cross-react against the different serovars, thus demonstrating how minor sequence variations in a complex microorganism shape the pathogen-specific T cell repertoire. Our results identify immune-dominant, serovar-specific, and cross-reactive T cell antigens, which should aid in the design of T cell-vaccination strategies against Salmonella.
Plasma Nuclear Magnetic Resonance Metabolomics Discriminates Between High and Low Endoscopic Activity and Predicts Progression in a Prospective Cohort of Patients With Ulcerative Colitis.
BACKGROUND AND AIMS: Endoscopic assessment of ulcerative colitis [UC] is one of the most accurate measures of disease activity, but frequent endoscopic investigations are disliked by patients and expensive for the healthcare system. A minimally invasive test that provides a surrogate measure of endoscopic activity is required. METHODS: Plasma nuclear magnetic resonance [NMR] spectra from 40 patients with UC followed prospectively over 6 months were analysed with multivariate statistics. NMR metabolite profiles were compared with endoscopic [Ulcerative Colitis Endoscopic Index of Severity: UCEIS], histological [Nancy Index] and clinical [Simple Clinical Colitis Activity Index: SCCAI] severity indices, along with routine blood measurements. RESULTS: A blinded principal component analysis spontaneously separated metabolite profiles of patients with low [≤3] and high [>3] UCEIS. Orthogonal partial least squares discrimination analysis identified low and high UCEIS metabolite profiles with an accuracy of 77 ± 5%. Plasma metabolites driving discrimination included decreases in lipoproteins and increases in isoleucine, valine, glucose and myo-inositol in high compared to low UCEIS. This same metabolite profile distinguished between low [Nancy 0-1] and high histological activity [Nancy 3-4] with a modest although significant accuracy [65 ± 6%] but was independent of SCCAI and all blood parameters measured. A different metabolite profile, dominated by changes in lysine, histidine, phenylalanine and tyrosine, distinguished between improvement in UCEIS [decrease ≥1] and worsening [increase ≥1] over 6 months with an accuracy of 74 ± 4%. CONCLUSION: Plasma NMR metabolite analysis has the potential to provide a low-cost, minimally invasive technique that may be a surrogate for endoscopic assessment, with predictive capacity.
The relationship between miR-29, NOD2 and crohn’s disease
Crohn’s disease (CD) is a chronic inflammatory bowel disease with a complex aetiology that includes genetic susceptibility and the gastrointestinal microbiome and results in an aberrant Th17 inflammatory response. NOD2 is an intracellular sensor that responds to bacterial cell wall peptidoglycan and contributes to immune defense. Polymorphisms in the NOD2 gene predispose to Crohn’s disease, with the largest effect of any of the known genetic risk factors. We have found that wild-type NOD2 controls the expression of miR-29 in human dendritic cells (DCs). miR-29 regulates the expression of a number of immune mediators including the IL-23 cytokine subunits IL-12p40 and IL-23p19. CD patient DCs expressing NOD2 polymorphisms fail to induce miR-29 and show enhanced IL-12p40 release on exposure to adherent invasive E. coli. Moreover in a murine model deficient in miR-29, a more severe Th17-driven colitis is established after DSS administration. Therefore, we suggest that the loss of miR-29-mediated immunoregulation in CD-variant NOD2 DCs contributes to elevated IL-23 and aberrant Th17 response in this disease.
Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation.
BACKGROUND & AIMS: Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4+ T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. METHODS: We collected samples of peripheral blood mononuclear cells and intestinal tissues from healthy individuals (controls, n = 13-30) and patients with inflammatory bowel diseases (n = 119; 59 with ulcerative colitis and 60 with Crohn's disease). We used 2 independent assays (CD154 detection and carboxy-fluorescein succinimidyl ester dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalis subsp lactis, Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum, Salmonella typhimurium, and Clostridium difficile) to quantify, expand, and characterize microbe-reactive CD4+ T cells. We sequenced T-cell receptor Vβ genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4+ T cells on intestinal stromal and epithelial cell lines. Cytokines, chemokines, and gene expression patterns were measured by flow cytometry and quantitative polymerase chain reaction. RESULTS: Circulating and gut-resident CD4+ T cells from controls responded to bacteria at frequencies of 40-4000 per million for each bacterial species tested. Microbiota-reactive CD4+ T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vβ repertoire. These cells were functionally heterogeneous, produced barrier-protective cytokines, and stimulated intestinal stromal and epithelial cells via interleukin 17A, interferon gamma, and tumor necrosis factor. In patients with inflammatory bowel diseases, microbiota-reactive CD4+ T cells were reduced in the blood compared with intestine; T-cell responses that we detected had an increased frequency of interleukin 17A production compared with responses of T cells from blood or intestinal tissues of controls. CONCLUSIONS: In an analysis of peripheral blood mononuclear cells and intestinal tissues from patients with inflammatory bowel diseases vs controls, we found that reactivity to intestinal bacteria is a normal property of the human CD4+ T-cell repertoire, and does not necessarily indicate disrupted interactions between immune cells and the commensal microbiota. T-cell responses to commensals might support intestinal homeostasis, by producing barrier-protective cytokines and providing a large pool of T cells that react to pathogens.
Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations.
Ulcerative colitis and Crohn's disease are the two main forms of inflammatory bowel disease (IBD). Here we report the first trans-ancestry association study of IBD, with genome-wide or Immunochip genotype data from an extended cohort of 86,640 European individuals and Immunochip data from 9,846 individuals of East Asian, Indian or Iranian descent. We implicate 38 loci in IBD risk for the first time. For the majority of the IBD risk loci, the direction and magnitude of effect are consistent in European and non-European cohorts. Nevertheless, we observe genetic heterogeneity between divergent populations at several established risk loci driven by differences in allele frequency (NOD2) or effect size (TNFSF15 and ATG16L1) or a combination of these factors (IL23R and IRGM). Our results provide biological insights into the pathogenesis of IBD and demonstrate the usefulness of trans-ancestry association studies for mapping loci associated with complex diseases and understanding genetic architecture across diverse populations.
Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease.
For most immune-mediated diseases, the main determinant of patient well-being is not the diagnosis itself but instead the course that the disease takes over time (prognosis). Prognosis may vary substantially between patients for reasons that are poorly understood. Familial studies support a genetic contribution to prognosis, but little evidence has been found for a proposed association between prognosis and the burden of susceptibility variants. To better characterize how genetic variation influences disease prognosis, we performed a within-cases genome-wide association study in two cohorts of patients with Crohn's disease. We identified four genome-wide significant loci, none of which showed any association with disease susceptibility. Conversely, the aggregated effect of all 170 disease susceptibility loci was not associated with disease prognosis. Together, these data suggest that the genetic contribution to prognosis in Crohn's disease is largely independent of the contribution to disease susceptibility and point to a biology of prognosis that could provide new therapeutic opportunities.
The Impact of NOD2 Variants on Fecal Microbiota in Crohn's Disease and Controls Without Gastrointestinal Disease.
BACKGROUND/AIMS: Current models of Crohn's disease (CD) describe an inappropriate immune response to gut microbiota in genetically susceptible individuals. NOD2 variants are strongly associated with development of CD, and NOD2 is part of the innate immune response to bacteria. This study aimed to identify differences in fecal microbiota in CD patients and non-IBD controls stratified by NOD2 genotype. METHODS: Patients with CD and non-IBD controls of known NOD2 genotype were identified from patients in previous UK IBD genetics studies and the Cambridge bioresource (genotyped/phenotyped volunteers). Individuals with known CD-associated NOD2 mutations were matched to those with wild-type genotype. We obtained fecal samples from patients in clinical remission with low fecal calprotectin (<250 µg/g) and controls without gastrointestinal disease. After extracting DNA, the V1-2 region of 16S rRNA genes were polymerase chain reaction (PCR)-amplified and sequenced. Analysis was undertaken using the mothur package. Volatile organic compounds (VOC) were also measured. RESULTS: Ninety-one individuals were in the primary analysis (37 CD, 30 bioresource controls, and 24 household controls). Comparing CD with nonIBD controls, there were reductions in bacterial diversity, Ruminococcaceae, Rikenellaceae, and Christensenellaceae and an increase in Enterobacteriaceae. No significant differences could be identified in microbiota by NOD2 genotype, but fecal butanoic acid was higher in Crohn's patients carrying NOD2 mutations. CONCLUSIONS: In this well-controlled study of NOD2 genotype and fecal microbiota, we identified no significant genotype-microbiota associations. This suggests that the changes associated with NOD2 genotype might only be seen at the mucosal level, or that environmental factors and prior inflammation are the predominant determinant of the observed dysbiosis in gut microbiota.