Search results
Found 9580 matches for
It is with profound sadness that we learnt of the death of Professor Vincenzo Cerundolo FRS.
Multi-organ abnormalities assessed by a single MRI scan in individuals with blood cancer.
BACKGROUND: During the COVID-19 pandemic individuals with all blood cancers were classified as clinically vulnerable and at high risk of complications and death. Our study sought to determine if individuals with specific blood cancers were at a heightened risk of longer term organ impairment, secondary to SARS-CoV-2 infection. METHODS: We set up a prospective observational study, utilising quantitative multi-parametric MRI to determine organ health over time in patients with specific blood cancers who had recovered from COVID-19. RESULTS: Multi-organ abnormality was more prevalent in blood cancer patients than in healthy controls (42 % vs 6 % p < 0.001) but comparable to the long COVID controls (42 % vs 33 %, p > 0.05). At 6 month follow up scans, organ abnormalities persisted in most individuals with blood cancer (71 % ≥1 organ and 52 % multi-organ). CONCLUSION: A multi-organ MRI platform offers the capacity to accurately evaluate organ health dynamically in blood cancers and detect asymptomatic organ impairment. The application of multi-organ MRI could aid early detection and longitudinal monitoring of organ impairment, potentially guiding more personalised treatment strategies and improving clinical outcomes in many rare diseases.
FLT3-ITDs instruct a myeloid differentiation and transformation bias in lymphomyeloid multipotent progenitors.
Whether signals mediated via growth factor receptors (GFRs) might influence lineage fate in multipotent progenitors (MPPs) is unclear. We explored this issue in a mouse knockin model of gain-of-function Flt3-ITD mutation because FLT3-ITDs are paradoxically restricted to acute myeloid leukemia even though Flt3 primarily promotes lymphoid development during normal hematopoiesis. When expressed in MPPs, Flt3-ITD collaborated with Runx1 mutation to induce high-penetrance aggressive leukemias that were exclusively of the myeloid phenotype. Flt3-ITDs preferentially expanded MPPs with reduced lymphoid and increased myeloid transcriptional priming while compromising early B and T lymphopoiesis. Flt3-ITD-induced myeloid lineage bias involved upregulation of the transcription factor Pu.1, which is a direct target gene of Stat3, an aberrantly activated target of Flt3-ITDs, further establishing how lineage bias can be inflicted on MPPs through aberrant GFR signaling. Collectively, these findings provide new insights into how oncogenic mutations might subvert the normal process of lineage commitment and dictate the phenotype of resulting malignancies.
Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo.
Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which different cancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function in vivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs in vivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation.
Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo
Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which differentcancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function invivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs invivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation. © 2014 Elsevier Inc.
Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy
The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding - a common and life-threatening side effect of many cancer therapies - and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output. © 2013 Macmillan Publishers Limited. All rights reserved.
Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy.
The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding--a common and life-threatening side effect of many cancer therapies--and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output.
Desferrioxamine mesylate for managing transfusional iron overload in people with transfusion-dependent thalassaemia.
BACKGROUND: Thalassaemia major is a genetic disease characterised by a reduced ability to produce haemoglobin. Management of the resulting anaemia is through red blood cell transfusions.Repeated transfusions result in an excessive accumulation of iron in the body (iron overload), removal of which is achieved through iron chelation therapy. Desferrioxamine mesylate (desferrioxamine) is one of the most widely used iron chelators. Substantial data have shown the beneficial effects of desferrioxamine, although adherence to desferrioxamine therapy is a challenge. Alternative oral iron chelators, deferiprone and deferasirox, are now commonly used. Important questions exist about whether desferrioxamine, as monotherapy or in combination with an oral iron chelator, is the best treatment for iron chelation therapy. OBJECTIVES: To determine the effectiveness (dose and method of administration) of desferrioxamine in people with transfusion-dependent thalassaemia.To summarise data from trials on the clinical efficacy and safety of desferrioxamine for thalassaemia and to compare these with deferiprone and deferasirox. SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register. We also searched MEDLINE, EMBASE, CENTRAL (The Cochrane Library), LILACS and other international medical databases, plus ongoing trials registers and the Transfusion Evidence Library (www.transfusionevidencelibrary.com). All searches were updated to 5 March 2013. SELECTION CRITERIA: Randomised controlled trials comparing desferrioxamine with placebo, with another iron chelator, or comparing two schedules or doses of desferrioxamine, in people with transfusion-dependent thalassaemia. DATA COLLECTION AND ANALYSIS: Six authors working independently were involved in trial quality assessment and data extraction. For one trial, investigators supplied additional data upon request. MAIN RESULTS: A total of 22 trials involving 2187 participants (range 11 to 586 people) were included. These trials included eight comparisons between desferrioxamine alone and deferiprone alone; five comparisons between desferrioxamine combined with deferiprone and deferiprone alone; eight comparisons between desferrioxamine alone and desferrioxamine combined with deferiprone; two comparisons of desferrioxamine with deferasirox; and two comparisons of different routes of desferrioxamine administration (bolus versus continuous infusion). Overall, few trials measured the same or long-term outcomes. Seven trials reported cardiac function or liver fibrosis as measures of end organ damage; none of these included a comparison with deferasirox.Five trials reported a total of seven deaths; three in patients who received desferrioxamine alone, two in patients who received desferrioxamine and deferiprone. A further death occurred in a patient who received deferiprone in another who received deferasirox alone. One trial reported five further deaths in patients who withdrew from randomised treatment (deferiprone with or without desferrioxamine) and switched to desferrioxamine alone.One trial planned five years of follow up but was stopped early due to the beneficial effects of a reduction in serum ferritin levels in those receiving combined desferrioxamine and deferiprone treatment compared with deferiprone alone. The results of this and three other trials suggest an advantage of combined therapy with desferrioxamine and deferiprone over monotherapy to reduce iron stores as measured by serum ferritin. There is, however, no evidence for the improved efficacy of combined desferrioxamine and deferiprone therapy against monotherapy from direct or indirect measures of liver iron.Earlier trials measuring the cardiac iron load indirectly by measurement of the magnetic resonance imaging T2* signal had suggested deferiprone may reduce cardiac iron more quickly than desferrioxamine. However, meta-analysis of two trials showed a significantly lower left ventricular ejection fraction in patients who received desferrioxamine alone compared with those who received combination therapy using desferrioxamine with deferiprone.Adverse events were recorded by 18 trials. These occurred with all treatments, but were significantly less likely with desferrioxamine than deferiprone in one trial, relative risk 0.45 (95% confidence interval 0.24 to 0.84) and significantly less likely with desferrioxamine alone than desferrioxamine combined with deferiprone in two other trials, relative risk 0.33 (95% confidence interval 0.13 to 0.84). In particular, four studies reported permanent treatment withdrawal due to adverse events from deferiprone; only one of these reported permanent withdrawals associated with desferrioxamine. Adverse events also occurred at a higher frequency in patients who received deferasirox than desferrioxamine in one trial. Eight trials reported local adverse reactions at the site of desferrioxamine infusion including pain and swelling. Adverse events associated with deferiprone included joint pain, gastrointestinal disturbance, increases in liver enzymes and neutropenia; adverse events associated with deferasirox comprised increases in liver enzymes and renal impairment. Regular monitoring of white cell counts has been recommended for deferiprone and monitoring of liver and renal function for deferasirox.In summary, desferrioxamine and the oral iron chelators deferiprone and deferasirox produce significant reductions in iron stores in transfusion-dependent, iron-overloaded people. There is no evidence from randomised clinical trials to suggest that any one of these has a greater reduction of clinically significant end organ damage, although in two trials, combination therapy with desferrioxamine and deferiprone showed a greater improvement in left ventricular ejection fraction than desferrioxamine used alone. AUTHORS' CONCLUSIONS: Desferrioxamine is the recommended first-line therapy for iron overload in people with thalassaemia major and deferiprone or deferasirox are indicated for treating iron overload when desferrioxamine is contraindicated or inadequate. Oral deferasirox has been licensed for use in children aged over six years who receive frequent blood transfusions and in children aged two to five years who receive infrequent blood transfusions. In the absence of randomised controlled trials with long-term follow up, there is no compelling evidence to change this conclusion.Worsening iron deposition in the myocardium in patients receiving desferrioxamine alone would suggest a change of therapy by intensification of desferrioxamine treatment or the use of desferrioxamine and deferiprone combination therapy.Adverse events are increased in patients treated with deferiprone compared with desferrioxamine and in patients treated with combined deferiprone and desferrioxamine compared with desferrioxamine alone. People treated with all chelators must be kept under close medical supervision and treatment with deferiprone or deferasirox requires regular monitoring of neutrophil counts or renal function respectively. There is an urgent need for adequately-powered, high-quality trials comparing the overall clinical efficacy and long-term outcomes of deferiprone, deferasirox and desferrioxamine.
Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia.
Decreased autophagy contributes to malignancies, however it is unclear how autophagy impacts on tumour growth. Acute myeloid leukemia (AML) is an ideal model to address this as (i) patient samples are easily accessible, (ii) the hematopoietic stem and progenitor population (HSPC) where transformation occurs is well characterized, and (iii) loss of the key autophagy gene Atg7 in hematopoietic stem and progenitor cells (HSPCs) leads to a lethal pre-leukemic phenotype in mice. Here we demonstrate that loss of Atg5 results in an identical HSPC phenotype as loss of Atg7, confirming a general role for autophagy in HSPC regulation. Compared to more committed/mature hematopoietic cells, healthy human and mouse HSCs displayed enhanced basal autophagic flux, limiting mitochondrial damage and reactive oxygen species in this long-lived population. Taken together, with our previous findings these data are compatible with autophagy limiting leukemic transformation. In line with this, autophagy gene losses are found within chromosomal regions that are commonly deleted in human AML. Moreover, human AML blasts showed reduced expression of autophagy genes, and displayed decreased autophagic flux with accumulation of unhealthy mitochondria indicating that deficient autophagy may be beneficial to human AML. Crucially, heterozygous loss of autophagy in an MLL-ENL model of AML led to increased proliferation in vitro, a glycolytic shift, and more aggressive leukemias in vivo. With autophagy gene losses also identified in multiple other malignancies, these findings point to low autophagy providing a general advantage for tumour growth.
Impact of a T cell-based blood test for tuberculosis infection on clinical decision-making in routine practice.
New T cell-based blood tests for tuberculosis infection could improve diagnosis of tuberculosis but their clinical utility remains unknown. We describe the role of the ELISpot test in the diagnostic work-up of 13 patients presenting with suspected tuberculosis in routine practice. Of the seven patients with a final diagnosis of active tuberculosis, all were positive by ELISpot including three with false-negative tuberculin skin test results. Rapid determination of tuberculosis infection by ELISpot accelerated the diagnosis of tuberculosis, enabling early treatment initiation.
Oral deferiprone for iron chelation in people with thalassaemia.
BACKGROUND: Thalassaemia major is a genetic disease characterised by a reduced ability to produce haemoglobin. Management of the resulting anaemia is through red blood cell transfusions.Repeated transfusions result in an excessive accumulation of iron in the body (iron overload), removal of which is achieved through iron chelation therapy. A commonly used iron chelator, deferiprone, has been found to be pharmacologically efficacious. However, important questions exist about the efficacy and safety of deferiprone compared to another iron chelator, desferrioxamine. OBJECTIVES: To summarise data from trials on the clinical efficacy and safety of deferiprone and to compare the clinical efficacy and safety of deferiprone with desferrioxamine for thalassaemia. SEARCH METHODS: We searched the Cochrane Cystic fibrosis and Genetic Disorders Group's Haemoglobinopathies trials Register and MEDLINE, EMBASE, CENTRAL (The Cochrane Library), LILACS and other international medical databases, plus registers of ongoing trials and the Transfusion Evidence Library (www.transfusionevidencelibrary.com). We also contacted the manufacturers of deferiprone and desferrioxamine.All searches were updated to 05 March 2013. SELECTION CRITERIA: Randomised controlled trials comparing deferiprone with another iron chelator; or comparing two schedules or doses of deferiprone, in people with transfusion-dependent thalassaemia. DATA COLLECTION AND ANALYSIS: Two authors independently assessed trials for risk of bias and extracted data. Missing data were requested from the original investigators. MAIN RESULTS: A total of 17 trials involving 1061 participants (range 13 to 213 participants per trial) were included. Of these, 16 trials compared either deferiprone alone with desferrioxamine alone, or a combined therapy of deferiprone and desferrioxamine with either deferiprone alone or desferrioxamine alone; one compared different schedules of deferiprone. There was little consistency between outcomes and limited information to fully assess the risk of bias of most of the included trials.Four trials reported mortality; each reported the death of one individual receiving deferiprone with or without desferrioxamine. One trial reported five further deaths in patients who withdrew from randomised treatment (deferiprone with or without desferrioxamine) and switched to desferrioxamine alone. Seven trials reported cardiac function or liver fibrosis as measures of end organ damage.Earlier trials measuring the cardiac iron load indirectly by magnetic resonance imaging (MRI) T2* signal had suggested deferiprone may reduce cardiac iron more quickly than desferrioxamine. However, a meta-analysis of two trials suggested that left ventricular ejection fraction was significantly reduced in patients who received desferrioxamine alone compared with combination therapy. One trial, which planned five years of follow up, was stopped early due to the beneficial effects of combined treatment compared with deferiprone alone in terms of serum ferritin levels reduction.The results of this and three other trials suggest an advantage of combined therapy over monotherapy to reduce iron stores as measured by serum ferritin. There is, however, no conclusive or consistent evidence for the improved efficacy of combined deferiprone and desferrioxamine therapy over monotherapy from direct or indirect measures of liver iron. Both deferiprone and desferrioxamine produce a significant reduction in iron stores in transfusion-dependent, iron-overloaded people. There is no evidence from randomised controlled trials to suggest that either has a greater reduction of clinically significant end organ damage.Evidence of adverse events were observed in all treatment groups. Occurrence of any adverse event was significantly more likely with deferiprone than desferrioxamine in one trial, RR 2.24 (95% CI 1.19 to 4.23). Meta-analysis of a further two trials showed a significant increased risk of adverse events associated with combined deferiprone and desferrioxamine compared with desferrioxamine alone, RR 3.04 (95% CI 1.18 to 7.83). The most commonly reported adverse event was joint pain, which occurred significantly more frequently in patients receiving deferiprone than desferrioxamine, RR 2.64 (95% CI 1.21 to 5.77). Other common adverse events included gastrointestinal disturbances as well as neutropenia or leucopenia, or both. AUTHORS' CONCLUSIONS: In the absence of data from randomised controlled trials, there is no evidence to suggest the need for a change in current treatment recommendations; namely that deferiprone is indicated for treating iron overload in people with thalassaemia major when desferrioxamine is contraindicated or inadequate. Intensified desferrioxamine treatment (by either subcutaneous or intravenous route) or use of other oral iron chelators, or both, remains the established treatment to reverse cardiac dysfunction due to iron overload. Indeed, the US Food and Drug Administration (FDA) recently only gave support for deferiprone to be used as a last resort for treating iron overload in thalassaemia, myelodysplasia and sickle cell disease. However, there is evidence that adverse events are increased in patients treated with deferiprone compared with desferrioxamine and in patients treated with combined deferiprone and desferrioxamine compared with desferrioxamine alone. There is an urgent need for adequately-powered, high-quality trials comparing the overall clinical efficacy and long-term outcome of deferiprone with desferrioxamine.