Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Previously we have used the Plasmodium dihydrofolate reductase thymidylate synthase (DHFR-TS) selectable marker to generate Plasmodium berghei TRAP null mutant parasites. These TRAP null mutants do not glide and they showed a great reduction in their ability to infect mosquito salivary glands and the hepatocytes of the vertebrate host. Thus far, complementation of these knockout parasites was not possible due to the lack of additional selectable markers. Recently, a new selectable marker, based on the human dihydrofolate reductase (hDHFR) gene, has been developed which confers resistance to the antifolate drug WR99210. This drug has been found to be highly active against pyrimethamine-sensitive and -resistant strains of P. berghei. In this study, we have used the hDHFR gene as a second selectable marker for the complementation of P. berghei TRAP null mutant parasites. Restoration of the TRAP null mutant parasites to the wild-type phenotype was achieved in this study via autonomously replicating episomes bearing a wild-type copy of the TRAP gene. This is the first report of complementation of a mutant phenotype in malaria parasites.

Original publication




Journal article


Mol Biochem Parasitol

Publication Date





151 - 156


Animals, Folic Acid Antagonists, Genetic Markers, Humans, Mutation, Plasmodium berghei, Protozoan Proteins, Sensitivity and Specificity, Tetrahydrofolate Dehydrogenase, Transfection