Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2016 IEEE. The use of non-negative matrix factorisation (NMF) on 2D face images has been shown to result in sparse feature vectors that encode for local patches on the face, and thus provides a statistically justified approach to learning parts from wholes. However successful on 2D images, the method has so far not been extended to 3D images. The main reason for this is that 3D space is a continuum and so it is not apparent how to represent 3D coordinates in a non-negative fashion. This work compares different non-negative representations for spatial coordinates, and demonstrates that not all non-negative representations are suitable. We analyse the representational properties that make NMF a successful method to learn sparse 3D facial features. Using our proposed representation, the factorisation results in sparse and interpretable facial features.

Original publication

DOI

10.1109/ICB.2016.7550083

Type

Conference paper

Publication Date

23/08/2016