Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The cell origin of the rare terminal deoxynucleotidyl transferase (TdT)-positive acute myeloid leukemias (AML) was investigated at the molecular level, by examining the configuration of the Ig H (Igh) and L (Ig kappa, Ig lambda) chain gene regions, and of the T cell receptor (TCR) beta and T cell rearranging (TRG) gamma loci. In 8 of the 10 TdT+ AML analyzed (classified as myeloid according to morphological and cytochemical criteria, and to the reactivity with one or more antimyeloid mAbs), a rearrangement of the Igh chain gene was found. In TdT- AML, evidence of an Igh gene reorganization was instead observed only in 2 of the 42 patients studied. Furthermore, evidence of TCR-beta and/or TRG-gamma gene rearrangement was observed in four AML, all of which belonged to the Igh-rearranged TdT+ group. In three cases (one TdT+ and two TdT-), the Ig kappa L chain gene was also in a rearranged position. These findings demonstrate a highly significant correlation between TdT expression and DNA rearrangements at the Igh and TCR chain gene regions and support the view that this enzyme plays an important role in the V-(D)-J recombination machinery. Overall, the genomic configuration, i.e., JH gene rearrangement sometimes coupled to a kappa L chain and TCR gene reorganization, similar to that found in non-T-ALL, suggests that in most cases of TdT+ AML, the neoplastic clone, despite the expression of myeloid-related features, is characterized by cells molecularly committed along the B cell lineage.

Original publication




Journal article


J Exp Med

Publication Date





879 - 890


Adolescent, Adult, Child, Child, Preschool, DNA, DNA Nucleotidylexotransferase, DNA Nucleotidyltransferases, Female, Humans, Immunoglobulin Heavy Chains, Immunoglobulin kappa-Chains, Immunoglobulin lambda-Chains, Immunoglobulins, Infant, Leukemia, Myeloid, Acute, Male, Middle Aged, Receptors, Antigen, T-Cell