Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Human T cell tumours have few consistently occurring translocations which provide markers for this disease. The translocation t(11;14)(p13;q11), however, seems to be an exception, since it has been repeatedly observed in T-ALL. We have analysed a number of T-ALL samples carrying the t(11;14) with a view to assessing the nature of the translocated sequences on chromosomes 11 and 14. Three of the tumours studied have breakpoints, at 14q11, within the T cell receptor delta chain locus, while a fourth appears to break in the J alpha region. The TCR delta sequences involved in the translocation junctions are made from D delta-D delta-J delta joins or from D delta-D delta joins, allowing us to define distinct human D delta and J delta segments. These results allow us to make a comparison between the human and mouse TCR delta loci, both as regards sequence and rearrangement hierarchies. The disparate translocation breakpoints at chromosome 14q11 contrast with the marked clustering of breaks at chromosome 11p13; in all four cases, the breakpoint occurs within a region of less than 0.8 kb of chromosome 11. The analysis of junctional sequences at the 11p13 breakpoint cluster region only shows a consensus heptamer-like sequence in one out of four tumours analysed. Therefore, recombinase-mediated sequence specific recognition is not the only cause of chromosomal translocation.


Journal article



Publication Date





2011 - 2017


Animals, Base Sequence, Cell Line, Chromosomes, Human, Pair 11, Chromosomes, Human, Pair 14, Cricetinae, Genes, Humans, Hybrid Cells, Molecular Sequence Data, Receptors, Antigen, T-Cell, Translocation, Genetic