Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Selective cloning procedures for T-cell-specific complementary DNAs have revealed the existence of a gene designated gamma as well as the main antigen receptor alpha- and beta-chain genes. The gamma-chain genes undergo rearrangement during T-cell differentiation but the patterns and complexity of such rearrangements differ markedly in mouse and human. In mouse, a panel of cytotoxic T-lymphocyte clones exhibit the same rearrangement pattern with a gamma-chain gene probe and a set of three gamma-chain variable (V) genes have been identified in the DNA. Clonal diversity in mouse seems to be confined to V-J (joining) regions. In contrast, human T-cell lines exhibit diverse rearrangements suggestive of a family of differing V gamma genes variously rearranging to the two gamma-chain constant (C) region genes. Here we report the cloning of two very different V gamma genes rearranged to J segments upstream of the two human C gamma genes. Both V gamma genes are rearranged productively but nucleotide sequence comparison shows that they possess very little homology with each other. This shows that human T-cell V gamma genes exist which differ significantly from each other at the nucleotide level and that such diverse genes can be usefully rearranged in different T cells.

Original publication




Journal article



Publication Date





420 - 422


Base Sequence, Chromosome Mapping, Cloning, Molecular, DNA Restriction Enzymes, Genes, Humans, Receptors, Antigen, T-Cell