Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The EWS-ERG fusion protein is found in human sarcomas with the chromosomal translocation t(21;22)(q22;q12), where the translocation is considered to be an initiating event in sarcoma formation within uncommitted mesenchymal cells, probably long-lived progenitors capable of self renewal. The fusion protein may not therefore have an oncogenic capability beyond these progenitors. To assess whether EWS-ERG can be a tumour initiator in cells other than mesenchymal cells, we have analysed Ews-ERG fusion protein function in a cellular environment not typical of that found in human cancers, namely, committed lymphoid cells. We have used Ews-ERG invertor mice having an inverted ERG cDNA cassette flanked by loxP sites knocked in the Ews intron 8, crossed with mice expressing Cre recombinase under the control of the Rag1 gene to give conditional, lymphoid-specific expression of the fusion protein. Clonal T cell neoplasias arose in these mice. This conditional Ews gene fusion model of tumourigenesis shows that Ews-ERG can cause haematopoietic tumours and the precursor cells are committed cells. Thus, Ews-ERG can function in cells that do not have to be pluripotent progenitors or mesenchymal cells.

Original publication




Journal article


PLoS Biol

Publication Date





Animals, B-Lymphocytes, Base Sequence, Bone Marrow, Cell Lineage, Genes, T-Cell Receptor beta, Humans, Integrases, Leukemia, T-Cell, Lymphoma, T-Cell, Mice, Models, Animal, Molecular Sequence Data, Oncogene Fusion, Oncogene Proteins, Fusion, RNA, Messenger, T-Lymphocytes, Thymoma, Thymus Neoplasms, Transcription Factors, Viral Proteins