Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Idiopathic myelofibrosis (IMF) is a chronic myeloproliferative disorder characterized by megakaryocyte hyperplasia and bone marrow fibrosis. Biologically, an autonomous megakaryocyte growth and differentiation is noticed, which contributes to the megakaryocyte accumulation. To better understand the molecular mechanisms involved in this spontaneous growth, we searched for genes differentially expressed between normal megakaryocytes requiring cytokines to grow and IMF spontaneously proliferating megakaryocytes. Using a differential display technique, we found that the immunophilin FKBP51 was 2 to 8 times overexpressed in megakaryocytes derived from patients' CD34(+) cells in comparison to normal megakaryocytes. Overexpression was moderate and confirmed in 8 of 10 patients, both at the mRNA and protein levels. Overexpression of FKBP51 in a UT-7/Mpl cell line and in normal CD34(+) cells induced a resistance to apoptosis mediated by cytokine deprivation with no effect on proliferation. FKBP51 interacts with both calcineurin and heat shock protein (HSP)70/HSP90. However, a mutant FKBP51 deleted in the HSP70/HSP90 binding site kept the antiapoptotic effect, suggesting that the calcineurin pathway was responsible for the FKBP51 effect. Overexpression of FKBP51 in UT-7/Mpl cells induced a marked inhibition of calcineurin activity. Pharmacologic inhibition of calcineurin by cyclosporin A mimicked the effect of FKBP51. The data support the conclusion that FKBP51 inhibits apoptosis through a calcineurin-dependent pathway. In conclusion, FKBP51 is overexpressed in IMF megakaryocytes and this overexpression could be, in part, responsible for the megakaryocytic accumulation observed in this disorder by regulating their apoptotic program.

Original publication




Journal article



Publication Date





2932 - 2940


Base Sequence, Bone Marrow, Cytokines, DNA Primers, DNA, Complementary, Fibrosis, Gene Expression Regulation, Granulocyte Colony-Stimulating Factor, Growth Substances, HSP90 Heat-Shock Proteins, Hematopoietic Stem Cells, Humans, Hyperplasia, Megakaryocytes, Molecular Sequence Data, Primary Myelofibrosis, Reverse Transcriptase Polymerase Chain Reaction, Sequence Alignment, Sequence Homology, Amino Acid, Tacrolimus Binding Proteins, Transcription, Genetic