Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Tumor hypoxia leads to adaptive responses in cancer cells, including an induction of vasculogenesis initiated by circulating endothelial progenitor cells (EPCs) and circulating endothelial cells (CECs). The aim of the present study was to correlate the number of EPCs and CECs with the oxygenation of cervical cancer. Blood concentrations of EPCs were detected by FACS analysis with antibodies for CD34 and vascular endothelial growth factor receptor 2 (VEGFR2). CECs were evaluated by double staining for 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-labeled acetylated low density lipoprotein (Di-LDL) and lectin in a cell culture assay. Ten patients with cervical cancer were compared with ten healthy volunteers. Intratumoral oxygen tension was assessed polarographically with the computerized Eppendorf histography system. Analysis of CEC numbers revealed no difference between patients and controls. However, patients had lower concentrations of CD34-positive hematopoietic stem cells (HSCs) but a significantly higher fraction of EPCs related to the number of HSCs (1.09% versus 0.53%). This fraction was significantly inversely correlated to the median oxygen tension (r = -0.74, p = 0.015). Our study shows for the first time a significant inverse correlation between the fraction of EPCs and intratumoral oxygen tension. We conclude that the fraction of EPCs should be further evaluated as a useful and convenient marker in the prediction of tumor tissue oxygenation.

Type

Journal article

Journal

Oncol Rep

Publication Date

09/2006

Volume

16

Pages

597 - 601

Keywords

Endothelium, Vascular, Female, Humans, Neoplastic Cells, Circulating, Oxygen, Stem Cells, Uterine Cervical Neoplasms, Vascular Endothelial Growth Factor Receptor-2