PURPOSE: We examined iron absorption and its regulation during two common scenarios experienced by endurance athletes. Our aims were to: (i) compare the effects of preexercise versus postexercise iron intake on iron absorption; and (ii) compare the impact of training at altitude (1800 m) on iron absorption preexercise. METHODS: Male runners (n = 18) completed three exercise trials over a 5-wk period, each preceded by 24 h of standardized low-iron diets. First, athletes completed two 60-min treadmill running trials at 65% V̇O2max at near sea-level (580 m). In a randomized order, preexercise and postexercise test meals labeled with 4 mg of 57Fe or 58Fe were consumed 30 min before or 30 min after exercise. Then, the same exercise trial was performed after living and training at altitude (~1800 m) for 7 d, with the labeled test meal consumed 30 min preexercise. We collected venous blood samples preexercise and postexercise for markers of iron status and regulation, and 14 d later to measure erythrocyte isotope incorporation. RESULTS: No differences in fractional iron absorption were evident when test meals were consumed preexercise (7.3% [4.4, 12.1]) or postexercise (6.2% [3.1, 12.5]) (n = 18; P = 0.058). Iron absorption preexercise was greater at altitude (18.4% [10.6, 32.0]) than at near sea-level (n = 17; P < 0.001) and hepcidin concentrations at altitude were lower at rest and 3 h postexercise compared with near sea level (P < 0.001). CONCLUSIONS: In an acute setting, preexercise and postexercise iron absorption is comparable if consumed within 30 min of exercise. Preexercise iron absorption increases 2.6-fold at altitude compared with near sea-level, likely due to the homeostatic response to provide iron for enhanced erythropoiesis and maintain iron stores.
Journal article
Med Sci Sports Exerc
01/01/2024
56
118 - 127
Humans, Male, Iron, Running, Exercise, Erythrocytes, Athletes