Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BackgroundSARS-CoV-2 serology is used to identify prior infection at individual and at population level. Extended longitudinal studies with multi-timepoint sampling to evaluate dynamic changes in antibody levels are required to identify the time horizon in which these applications of serology are valid, and to explore the longevity of protective humoral immunity.MethodsHealthcare workers were recruited to a prospective cohort study from the first SARS-CoV-2 epidemic peak in London, undergoing weekly symptom screen, viral PCR and blood sampling over 16-21 weeks. Serological analysis (n =12,990) was performed using semi-quantitative Euroimmun IgG to viral spike S1 domain and Roche total antibody to viral nucleocapsid protein (NP) assays. Comparisons were made to pseudovirus neutralizing antibody measurements.FindingsA total of 157/729 (21.5%) participants developed positive SARS-CoV-2 serology by one or other assay, of whom 31.0% were asymptomatic and there were no deaths. Peak Euroimmun anti-S1 and Roche anti-NP measurements correlated (r = 0.57, p<0.0001) but only anti-S1 measurements correlated with near-contemporary pseudovirus neutralising antibody titres (measured at 16-18 weeks, r = 0.57, p<0.0001). By 21 weeks' follow-up, 31/143 (21.7%) anti-S1 and 6/150 (4.0%) anti-NP measurements reverted to negative. Mathematical modelling revealed faster clearance of anti-S1 compared to anti-NP (median half-life of 2.5 weeks versus 4.0 weeks), earlier transition to lower levels of antibody production (median of 8 versus 13 weeks), and greater reductions in relative antibody production rate after the transition (median of 35% versus 50%).InterpretationMild SARS-CoV-2 infection is associated with heterogeneous serological responses in Euroimmun anti-S1 and Roche anti-NP assays. Anti-S1 responses showed faster rates of clearance, more rapid transition from high to low level production rate and greater reduction in production rate after this transition. In mild infection, anti-S1 serology alone may underestimate incident infections. The mechanisms that underpin faster clearance and lower rates of sustained anti-S1 production may impact on the longevity of humoral immunity.FundingCharitable donations via Barts Charity, Wellcome Trust, NIHR.

Original publication

DOI

10.1016/j.ebiom.2021.103259

Type

Journal article

Journal

EBioMedicine

Publication Date

02/03/2021

Volume

65

Addresses

Institute of Cardiovascular Sciences, University College London, London, UK; Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK.

Keywords

Humans, Immunoglobulin A, Immunoglobulin G, Phosphoproteins, Antibodies, Viral, Health Personnel, Antibodies, Neutralizing, Spike Glycoprotein, Coronavirus, Protein Domains, COVID-19, SARS-CoV-2, Coronavirus Nucleocapsid Proteins