Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: XR5000 (N-[2-(dimethylamino)ethyl]acridine-4-carboxamide) is a topoisomerase I and II inhibitor. Because the cytotoxicity of XR5000 increases markedly with prolonged exposure, we performed a phase I study of weekly XR5000 by 120-hour continuous infusion over 3 weeks. PATIENTS AND METHODS: Twenty-four patients with advanced solid cancer were treated at seven dose levels (700 to 4,060 mg/m2/120 hrs) for a total of 67 cycles. Three patients underwent positron emission tomography (PET) studies at the maximum-tolerated dose (MTD) to evaluate normal tissue and tumor carbon-11 radiolabeled XR5000 ([11C]XR5000) pharmacokinetics. RESULTS: The dose-limiting toxicity was National Cancer Institute Common Toxicity Criteria (version 1) grade 4 chest and abdominal pain affecting the single patient receiving 4,060 mg/m2/120 hours, and the MTD was 3,010 mg/m2/120 hours. Other grade 3-4 toxicities, affecting single patients at the MTD, were myelosuppression (grade 4), raised bilirubin, vomiting, and somnolence (all grade 3). There was one partial response (adenocarcinoma of unknown primary); the remainder had progressive disease. [11C]XR5000 distributed well into the three tumors studied by PET. Tumor uptake (maximum concentration or area under the concentration versus time curve [AUC]) was less than in normal tissue in which the tumors were located. Tumor exposure (AUC; mean +/- SD in m2/mL/sec) increased when [(11)C]XR5000 was administered during an infusion of XR5000 (0.242 +/- 0.4), compared with [11C]XR5000 given alone (0.209 +/- 0.04; P <.05), indicating that tumor drug exposure was not saturated [corrected]. CONCLUSION: The recommended dose for XR5000 in phase II studies is 3,010 mg/m2/120 hours. PET studies with 11C-labeled drug were feasible and demonstrated in vivo distribution into tumors. Saturation of tumor exposure was not reached at the MTD.

Original publication

DOI

10.1200/JCO.2003.02.008

Type

Journal article

Journal

J clin oncol

Publication Date

15/01/2003

Volume

21

Pages

203 - 210

Keywords

Acridines, Adult, Aged, Area Under Curve, Carbon Radioisotopes, Dose-Response Relationship, Drug, Female, Humans, Infusions, Intravenous, Male, Maximum Tolerated Dose, Middle Aged, Neoplasms, Tissue Distribution, Tomography, Emission-Computed