Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

AIMS: To develop a population pharmacokinetic model for paclitaxel in the presence of a MDR modulator, zosuquidar 3HCl. METHODS: The population approach was used (implemented with NONMEM) to analyse paclitaxel pharmacokinetic data from 43 patients who received a 3-h intravenous infusion of paclitaxel (175 mg x m(-2) or 225 mg x m(-2)) alone in cycle 2 or concomitantly with the oral administration of zosuquidar 3HCl in cycle 1. RESULTS: The structural pharmacokinetic model for paclitaxel, accounting for the Cremophor ELTM impact, was a three-compartment model with a nonlinear model for paclitaxel plasma clearance (CL), involving a linear decrease in this parameter during the infusion and a sigmoidal increase with time after the infusion. The final model described the effect of Zosuquidar 3HCl on paclitaxel CL by a categorical relationship. A 25% decrease in paclitaxel CL was observed, corresponding to an 1.3-fold increase in paclitaxel AUC (from 14829 microg x l(-1) x h to 19115 microg x l(-1) x h following paclitaxel 175 mg x m(-2)) when zosuquidar Cmax was greater than 350 microg x l(-1). This cut-off concentration closely corresponded to the IC50 of a sigmoidal Emax relationship (328 microg x l(-1)). A standard dose of 175 mg x m(-2) of paclitaxel could be safely combined with doses of zosuquidar 3HCl resulting in plasma concentrations known, from previous studies, to result in maximal P-gp inhibition. CONCLUSIONS: This analysis provides a model which accurately characterized the increase in paclitaxel exposure, which is most likely to be due to P-gp inhibition in the bile canaliculi, in the presence of zosuquidar 3HCl (Cmax > 350 microg x l(-1)) and is predictive of paclitaxel pharmacokinetics following a 3 h infusion. Hence the model could be useful in guiding therapy for paclitaxel alone and also for paclitaxel administered concomitantly with a P-gp inhibitor, and in designing further clinical trials.

Type

Journal article

Journal

Br J Clin Pharmacol

Publication Date

07/2003

Volume

56

Pages

46 - 56

Keywords

ATP-Binding Cassette, Sub-Family B, Member 1, Administration, Oral, Adult, Aged, Antineoplastic Agents, Phytogenic, Cohort Studies, Dibenzocycloheptenes, Drug Combinations, Drug Interactions, Drug Resistance, Multiple, Female, Humans, Male, Middle Aged, Neoplasms, Paclitaxel, Quinolines