Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Measuring diffusion dynamics in living cells is essential for the understanding of molecular interactions. While various techniques have been used to explore such characteristics in the plasma membrane, this is less developed for measurements inside the cytosol. An example of cytosolic action is the import of proteins into peroxisomes, via the peroxisomal import receptor PEX5. Here, we combined advanced microscopy and spectroscopy techniques such as fluorescence correlation spectroscopy (FCS) and super-resolution STED microscopy to present a detailed characterization of the diffusion and interaction dynamics of PEX5. Among other features, we disclose a slow diffusion of PEX5, independent of aggregation or target binding, but associated with cytosolic interaction partners via its N-terminal domain. This sheds new light on the functionality of the receptor in the cytosol. Besides specific insights, our study highlights the potential of using complementary microscopy tools to decipher molecular interactions in the cytosol via studying their diffusion dynamics. Summary The peroxisomal import receptor PEX5 transports newly synthesized proteins from the cytosol to the peroxisomal matrix. Here the cytosolic diffusion and interaction dynamics of PEX5 are characterized by advanced microscopic spectroscopy methods, revealing a so far unknown interaction partner.

Original publication




Conference paper

Publication Date