Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Supat Thongjuea

PhD


Oxford-BMS Research Fellow

I am a computational biologist. I apply computational approaches for the analysis of sequencing data generated by single-cell multi-omics technologies to understand normal and malignant cells in hematopoiesis.

I mainly focus on the single-cell transcriptome and epigenome analyses produced by different single-cell platforms (e.g. Target-Seq, 10x genomics) for studying the complexity of hematopoietic stem and progenitor cell subpopulations. My aim is to apply single-cell multi-omics combining with a novel development of computational and statistical methods including machine learning approaches to translational medicine challenges.

My current work focuses on the integration of multiple single-cell RNA and ATAC genomics datasets from Acute Myeloid Leukemia (AML) patients undergoing clinical trials. Integrative single-cell multi-omic data sets could help to identify distinct cellular compartments, and resolve tumor heterogeneity, providing insights into deregulated pathways, and transcriptional and epigenetic signatures of mutant cells. This could potentially lead to the discovery of new targets and therapies to address the unmet medical need of AML patients.