Genetics, genomics and gene regulation

Steve Twigg Clinical Genetics Group WIMM Oxford

WIMM DPhil Course Nov 2019

Next Generation Sequencing (NGS) impact

Disease gene identification

Study of gene regulation

stephen.twigg@imm.ox.ac.uk

jim.hughes@imm.ox.ac.uk

DNA sequencing output

Figure 1 | Changes in instrument capacity over the past decade, and the timing of major sequencing projects. Top, increasing scale of data output per run plotted on a logarithmic scale. Middle, timeline representing major

milestones in massively parallel sequencing platform introduction and instrument revisions. Bottom, the timing of several projects and milestones described in the text.

Cost per Human Genome

Illumina HiSeq X Ten system – 45 genomes in a day for \$1000 each [1800 Gb/run (3 days) 18,000 genomes/year]

DNA sequencing output

2nd generation DNA-sequencing - Illumina

Relies on PCR

Illumina 'wash-and-scan' - 1, sequential flooding in of labeled nucleotides - 2, incorporation of nucleotides into the **DNA** strands - 3, stopping the incorporation reaction - 4, washing out the excess reagent - 5, scanning to identify the incorporated bases - 6, prepare the DNA templates for the

next 'wash-and-scan'

cycle

Massively parallel generation of short fragment reads

Mardis ER 2017 Nat Protocol 12:213

NGS reads

STRUCTURE DETAILS

140 - 240 Million sequences from each end HiSeq2500

- ~ 400 Million Nextseq
- ~ 20 Million MiSeq
- 10 Billion NovaSeq

NGS Sequencing Introduction

Methods to find disease genes

- 1. Linkage/association
- 2. Chromosome abnormality
- 3. Animal model/ Candidate gene
- 4. Exome/ whole genome sequencing
- 5. Complex disease GWAS

A step change in disease gene identification

Koboldt et al., Cell **155**, 2013

Table 1. OMIM Phenotypes for which the Molecular Basis IsKnown, 2007 and 2013

Inheritance Pattern	January 2007	July 2013
Autosomal	1,851	3,525
X Linked	169	277
Y Linked	2	4
Mitochondrial	26	28
Total	2,048	3,834

Table 2. Disease-Causing Genes Identified by Exome Sequencing Studies, 2009–2010

Gene	Disorder	Individuals	Citation
DHODH	Miller syndrome	four affected from three kindreds	(Ng et al., 2010b)
FLVCR2	Fowler syndrome	two unrelated	(Lalonde et al., 2010)
GPSM2	Nonsyndromic hearing loss	one proband	(Walsh et al., 2010)
MLL2	Kabuki syndrome	ten unrelated	(Ng et al., 2010a)
WDR62	Severe brain malformations	one proband	(Bilgüvar et al., 2010)
PIGV	Hyperphosphatasia mental retardation	three siblings	(Krawitz et al., 2010)
WDR35	Sensenbrenner syndrome	two unrelated	(Gilissen et al., 2010)
STIM1	Kaposi sarcoma	one patient	(Byun et al., 2010)
ANGPTL3	Familial combined hypolipidemia	two family members	(Musunuru et al., 2010)
ACAD9	Complex I deficiency	one patient	(Haack et al., 2010)
SETBP1	Schinzel-Giedion syndrome	four unrelated	(Hoischen et al., 2010)
TGM6	Spinocerebellar ataxia	four family members	(Wang et al., 2010)
FADD	Autoimmune lymphoproliferative syndrome	one proband	(Bolze et al., 2010)
VCP	Familial ALS	two family members	(Johnson et al., 2010)

Massively parallel sequencing – first disease gene

Exome sequencing identifies the cause of a mendelian disorder

Sarah B Ng^{1,10}, Kati J Buckingham^{2,10}, Choli Lee¹, Abigail W Bigham², Holly K Tabor^{2,3}, Karin M Dent⁴, Chad D Huff⁵, Paul T Shannon⁶, Ethylin Wang Jabs^{7,8}, Deborah A Nickerson¹, Jay Shendure¹ & Michael J Bamshad^{1,2,9}

We demonstrate the first successful application of exome sequencing to discover the gene for a rare mendelian disorder of unknown cause, Miller syndrome (MIM%263750). For four affected individuals in three independent kindreds, we captured and sequenced coding regions to a mean coverage of 40× and sufficient depth to call variants at ~97% of each targeted exome. Filtering against public SNP databases and eight HapMap exomes for genes with two previously unknown variants in each of the four individuals identified a single candidate gene, *DHODH*, which encodes a key enzyme in the pyrimidine *de novo* biosynthesis pathway. Sanger sequencing confirmed the presence of *DHODH* mutations in three additional families with Miller syndrome. Exome sequencing of a small number of unrelated affected individuals is a powerful, efficient strategy for identifying the genes underlying rare mendelian disorders and will likely transform the genetic analysis of monogenic traits.

VOLUME 42 | NUMBER 1 | JANUARY 2010 | NATURE GENETICS

2010

Exome sequencing

Pros: Most disease variants are coding Cheaper than whole genome – multiplex Targeted capture is possible Bioinformatics pipeline easier – fewer variants to deal with

Cons: Some exons are omitted from capture library Non-coding regions not covered GC-rich regions – no baits / poor capture

Exome sequencing as a tool for Mendelian disease gene discovery

Michael J. Bamshad^{*†}, Sarah B. Ng[‡], Abigail W. Bigham^{*§}, Holly K. Tabor^{*||}, Mary J. Emond[¶], Deborah A. Nickerson[‡] and Jay Shendure[‡]

Unlocking Mendelian disease using exome sequencing

Gilissen et al. Genome Biology 2011, 12:228

Whole exome or targeted sequencing

Agilent

Exome seq aligned to genome

Exome seq aligned to genome

WIMM Centre for Computational Biology Steve Taylor Simon McGowan

Sequencing reads aligned to the human genome Black – reference bases Red – variant bases

Whole genome sequencing

Pros: Both exonic and non-coding variants are detected Uniform coverage CNVs / translocations detected

Cons: Cost Vast amount of data - ~ 4 million variants/ individual Bioinformatic analysis is challenging – data volume/ variant calling Sequencing errors over repeats/simple sequences

Science. 2010 Apr 30;328(5978):636-9. Epub 2010 Mar 10.

Analysis of genetic inheritance in a family quartet by whole-genome sequencing.

Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT, Rowen L, Pant KP, Goodman N, Bamshad M, Shendure J, Drmanac R, Jorde LB, Hood L, Galas DJ.

Institute for Systems Biology, Seattle, WA 98103, USA.

Disease gene identification

Strategy - Informed by inheritance pattern

Autosomal dominant inheritance

- Disease manifests when only one gene of pair carries mutation
- Sexes usually equally affected
- Risk for siblings and offspring of affected individual = 50%

Autosomal recessive inheritance

- Disease manifests when both genes of a pair carry a mutation
- Sexes usually equally affected
- More common when parents are consanguineous
- Offspring risk for parents of affected individual = 25%
- Risk to offspring of affected individuals low (usually <1%)
- Carrier risk to siblings of affected individual = 2/3 (67%)

X-linked (recessive) inheritance

- Disease manifests in males, females are carriers
- No male to male transmission; all female offspring of affected males are carriers
- Risk to offspring of carrier female for affected male 25%
- Fragile X mental retardation is a special case: about 10% of male offspring of carrier females are 'premutation' carriers

Polygenic inheritance

 Clustering of cases within a family, not conforming to any clear pattern of inheritance

• Risks must be based on empiric data

Disease gene identification strategies

Pedigrees - mode of inheritance/ which individuals to sequence?

Assume *de novo* (2-3 coding variants/ generation) [could be recessive or dominant]

Familial variant inherited from 1 parent [underpowered, long list of variants]

Recessive

Assume recessive (homozygous or compound heterozygous) [could be dominant]

Disease gene identification strategies

Next generation sequencing analysis generates large numbers of variants

- 1) Segregation SNP array Dominant
- 2) Segregation SNP array Recessive
- 3) Cohort studies shared genes
- 4) Trio de novo/recessive

1) Dominant

Genotype (SNP array or sequencing) all family members to (1) identify genomic regions that segregate with disease or (2) to identify regions of homozygosity

2) Recessive

Disease gene identification strategies

Next generation sequencing analysis generates large numbers of variants

- 1) Segregation SNP array Dominant
- 2) Segregation SNP array Recessive
- 3) Cohort studies shared genes
- 4) Trio de novo/recessive

3) Cohort studies

4) Trio

Identify variants in shared genes

Identify new variants

Identifying disease causing variants - which variants to follow up?

The genome contains:

100 loss of function mutations with 20 genes having both copies inactivated (MacArthur et al., 2012)

218-515 damaging missense mutations with 40-85 present in the homozygous state (Xue et al., 2012)

40-100 have previously been annotated as disease causing

Which variants to follow up?

Check that variants haven't been seen before:

- Exome Variant Server (http://evs.gs.washington.edu/EVS/)
- Exome Aggregation Consortium (http://exac.broadinstitute.org/)
- Local solved exomes/genomes
- Filter against dbSNP BUT contains clinically relevant variants

ExAC Browser (Beta) | Exome Aggregation Consortium

Search for a gene or variant or region

Examples - Gene: PCSK9, Transcript: ENST00000407236, Variant: 22-46615880-T-C, Multi-allelic variant: rs1800234, Region: 22:46615715-46615880

About ExAC

The Exome Aggregation Consortium (ExAC) is a coalition of investigators seeking to aggregate and harmonize exome sequencing data from a wide variety of large-scale sequencing projects, and to make summary data available for the wider scientific community.

The data set provided on this website spans 60,706 unrelated individuals sequenced as part of various disease-specific and population genetic studies. The ExAC Principal Investigators and groups that have contributed data to the current release are listed here.

All data here are released under a Fort Lauderdale Agreement for the benefit of the wider biomedical community - see the terms of use here.

Sign up for our mailing list for future release announcements here.

Recent News

August 8, 2016

- CNV calls are now available on the ExAC browser

March 14, 2016

- Version 0.3.1 ExAC data and browser (beta) is released! (Release notes)

January 13, 2015

- Version 0.3 ExAC data and browser (beta) is released! (Release notes)

Which variants to follow up?

Check that variants haven't been seen before: - gnomAD (https://gnomad.broadinstitute.org/)

gno

nAD browser	gnomAD v2.1.1 - Search									
	gnomAD v3 released! 71,702 genomes aligned on GRCh38.									
	anomAD									
	GIIOIIIAD									
	genome aggregation database									
	gnomAD v2.1.1 - Search by gene, region, or variant									
	Please note that gnomAD v2.1.1 and v3 contain largely non-overlapping samples and both datasets									
	"Should I switch to the latest version of gnomAD?"									
	Eventeles Const DOCKO Verienti 1 EEE16009 O CA									
	Examples - Gene. PCSK9, Variant. 1-55510686-G-GA									
	The Genome Aggregation Database (gnomAD) is a resource developed by an international coalition of investigators with the goal of aggregating and harmonizing both exome and genome sequencing									
	data from a wide variety of large-scale sequencing projects, and making summary data available for									
	the wider scientific community.									
	The v2 data set (GRCh37/hg19) provided on this website spans 125,748 exome sequences and									
	15,708 whole-genome sequences from unrelated individuals sequenced as part of various disease- specific and population genetic studies. The v3 data set (GRCh38) spans 71,702 genomes, selected									
	as in v2. The gnomAD Principal Investigators and groups that have contributed data to the current release are listed here.									

Which variants to follow up?

Is the gene under constraint? pLI metric (ExAC) pLI >= 0.9 - extremely LoF intolerant

Constraint from ExAC	Expected no. variants	Observed no. variants	Constraint Metric
Synonymous	173.9	101	z = 3.43
Missense	270.3	91	Z = 5.33
LoF	9.8	1	pLI = 0.83
CNV	3.2	0	z = 0.73

Samocha et al *Nature Genetics* **46**, 944–950 (2014); Samocha et al bioRxiv 148353 (2017)

Prioritise coding variants and focus on damaging variants?

- nonsense/frameshift/missense (assess missense with Polyphen2/SIFT/other algorithms ANNOVAR output CBRG pipeline)
- Conservation CADD scores (https://cadd.gs.washington.edu/)

Does the affected gene fit with the disease? Within an interesting gene/pathway? Expression patterns Animal models

Candidate variant list – what next?

GIR(CtHom	Delete Di	stan Func Gene	ExonicFunc AAChange	Conse SegD	Fwd Re	v Fwd F	Rev_var_r	e WGS V	VGS WGS	ESP6500 10	00g2l dbSNP1AV	S LJB LJ	B LJB LJB	LJB LJB	LJB LJB	LJB LJB	LJB Cos	mi Chr	Start	End Ref	Obs
GI RegionSeg	6	exonic FGFR1	nonsynonymoi, NM_001174066;c.C2083T;p.R695W	521;Name=I	30 17	18	25 0.48	3		8E-05		0 1 C	1 D	1 D	1 D	1 D	5	chr8	38271265	38271265 G	A
GIRCY A disorder of prenatal onset characterized by microcephaly, congenital cataracts, facial dys	smc 5	exonic ERCC1	nonsynonymoi. NM_202001:c.G370T:p.G124C	463;Name=I	7 14	8	12 0.49	3				0 1 C	1 D	1 D	1 D	1 D	5	chr19	45923637	45923637 C	A
GI Regions 1/2, mutations cause Joubert syndrome (JBTS) is an autosomal-recessive disorder charact	ter 4	exonic C5orf42	nonsynonymoi, NM_023073:c.G3955C:p.E1319Q	425;Name=I	1 0	1	0 0.5	5				0 1 C	1 T	1 D	1 D	ON	6	chr5	37187641	37187641 C	G
GI Regions mutations associated with mandibulofacial dysostosis[2] is a rare autosomal dominant cong	ger 4	exonic EFTUD2	nonsynonymoi, NM_001142605:c.A1291C:p.S431R	559;Name=I	11 10	5	3 0.28	3				1 1 C	0 T	0 B	1 D	1 D	6	chr17	42941040	42941040 T	G
GIR(Y Acts as a receptor for sonic hedgehog (SHH), indian hedgehog (IHH) and desert hedgehog	a (C 4	exonic PTCH1	nonsynonymoi, NM_000264:c.G3956A:p.R1319H	602;Name=I	10 16	11	17 0.52	2				0 1 C	1 D	1 D	1 D	1 NA	5	chr9	98209582	98209582 C	T
GI Regions human SIM gene is a candidate for involvement in certain dysmorphic features (particular)	yti 4	exonic SIM1	nonsynonymol NM_005068:c.C454G:p.Q152E	419;Name=I	12 20	10	22 0.5	5 0	1 274	8E-05	rs1409C	0 1 C	1 T	0 B	1 D	1 D	5	chr6	100897470	100897470 G	C
GI RegionS Wnt-3 and Wnt-3a play distinct roles in cell-cell signaling during morphogenesis of the deve	elo 4	exonic WNT3A	nonsynonymol NM_033131:c.G568T:p.A190S	534;Name=I	0 8	0	3 0.27					0 1 C	1 D	1 D	1 D	ON	4	chr1	228238611	228238611 G	T
GI Regions facial dysmorphism G2/M checkpoint, ATR/ATM signalling cascade, chromosome segregat	tior 2	exonic CEP164	nonsynonymoi, NM_014956:c.A1702C:p.T568P	284;Name=I	16 6	0	10 0.31				rs74388	0 1 C	1 D	0 B	1 N	ON	4	chr11	117253636	117253636 A	C
GIR(Y 1/3 Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closed	sur 2	exonic PHACTR4	nonsynonymol NM_023923:c.C1388A:p.S463Y	304;Name=I	0 2	0	1 0.33	8				0 1 N	1 T	1 D	1 N	1 D	-1	chr1	28800600	28800600 C	A
GI Regions 1/3 reads, worth looking at as essential for proper limb development	2	exonic SP8	stopgain SNV NM_182700:c.C860A:p.S287X	697;Name=I	1 1	2	2 0.67					0 1 C	1 NA	1 NA	1 U	1 D	4	chr7	20824576	20824576 G	T
GI RegionS 2/8 This nuclear protein probably functions as a transcription factor in early stages of left-ri	igh 2	exonic ZIC3	nonsynonymol NM_003413:c.C415A:p.L1391	578;Name=I	1 4	1	1 0.29	9				0 1 C	1 T	0 B	1 D	0 N	4	chrX	136649265	136649265 C	A
GI Regions Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differ	ren 2	exonic ZNF281	nonsynonymoi, NM_012482:c.A561T:p.Q187H		17 42	21	35 0.49	3				ON	1 D	0 B	1 D	ON	-6	chr1	200378273	200378273 T	A
GI Regions 1/2 reads only, Mutations in this gene have been associated with left-right axis malformatic	ons 1	exonic LEFTY2	stopgain SNV NM 003240:c.G442T:p.E148X	461;N 0.9	0 1	1	0 0.5	5				ON	1 NA	1 NA	1 N	1 A	-5	chr1	226127511	226127511 C	A
GIR(Y 1/3, This protein functions as a negative regulator of the wingless-type MMTV integration si	ite 0	exonic AXIN1	nonsynonymoi. NM_003502:c.G1777T:p.A593S	374;Name=I	1 0	1	0 0.5	5				1 1 N	0 T	0 B	1 N	ON	1	chr16	347729	347729 C	A
GI Regions 2/5, converts D-2-hydroxyglutarate to 2-ketoglutarate. Mutations in this gene are present in	n C O	exonic D2HGDH	nonsynonymol NM_152783:c.C50A:p.A17D		2 3	0	2 0.29	9				0 1 N	1 T	0 B	0 U	ON	0	chr2	242674689	242674689 C	A
GI Regions 1/2, acromegaly, bone changes that alter various facial features etc	0	exonic GHDC	nonsynonymoi, NM_001142622:c.C814A:p.L2721		0 1	0	1 0.5	5				0 1 N	0 T	0 B	1 N	0 N	-2	chr17	40343187	40343187 G	T
GI Regit Y Transactivates the HES3 promoter independently of NOTCH proteins. HES3 is a non-cano	inic 0	exonic MAMLD1	nonframeshift i NM_001177466:c.1739_1740insACAGCA	4 317;Name=I	0 0	0	3 1											chrX	149639659	149639659 -	ACAG
GI RegionS Mutations in this gene cause 3M syndrome type 2, Characteristic craniofacial malformation	ist 0	exonic OBSL1	nonsynonymoi, NM_001173408:c.T1775A:p.I592N	278;Name=I	12 4	11	2 0.45	5				0					1	chr2	220432057	220432057 A	Т

Validate in the family

Proving causation: Find more cases with mutations in the same gene

- Resequence in related cases
- Functional analysis
- Animal models

Interpretation of sequence variants - gene regulation

~ 90% GWAS hits are not gene associated

Distribution of Enhancers around their Target Genes

To appreciated the impact of sequence variants and mutations in health and disease

- Understand the biology of distal regulation

Interrogation of molecular events associated gene regulation

- Genome-wide
- High-resolution
- Dynamics

ChIPseq/RNAseq/Dnase-seq/ /ATACseq/CaptureC

Linking promoters and their regulatory elements represents a major bottleneck

Deletions associated with alpha thalassemia

Jim Hughes

ARTICLE

doi:10.1038/nature11677

Seventy-five genetic loci influencing the human red blood cell

A list of authors and their affiliations appears at the end of the paper

Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at $P < 10^{-8}$, which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in *Mus musculus* or *Drosophila melanogaster*. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.

Non-coding variants associated with hemoglobinization

Chromatin Immunoprecipitation (ChIP)

Chromatin Immunoprecipitation (ChIP)

Erythroid Transcription Factors at the α Globin Locus

DNase 1 Hypersensitive sites

Erythroid Transcription Factors in the α Globin Locus

Comparative DHS Analysis - Mouse α Globin Locus

Open-chromatin assays

DNase-Seq

Classic method

DNasel enzyme ► TFs ●

- Difficult to setup and optimise (cellspecific)
- Next generation sequencing protocol rather tedious
- Requires high cell number: 30-50
 million cells

Boyle et al., 2008 Hesselberth et al.,2011 Neph et al., 2012 Hosseini et al.,2013

ATAC-Seq

- Recent development
- Protocol relatively easy to setup
- Rapid NGS protocol
- Adapted for low cell number: 50000 cells or even 500

Chromatin Accessibility Assay

scATAC-seq

Buenrostro et al Nat Methods 2013 Maria Suciu Unpublished

RNA-seqs; Plural

Connecting REs to genes

Chromosome Conformation Capture (3C)

Chromosome Conformation Capture (3C)

Capture-C interaction profile

Davies JO et al. Nature Methods **13**:74 (2016) Davies JO et al. Nature Methods **142**:125 (2017)

Hughes lab

Increases in contact frequency at active and in active regulatory elements

