Methods and Techniques in Bioinfomatics

(From DNA bases to image databases)

Stephen Taylor

MRC WIMM Centre of Computational Biology

Weatherall Institute of Molecular Medicine

MRC WIMM Centre for Computational Biology

Using computational biology to help understand complex biological systems and combat diseases, from blood disorders to cancer and diabetes.

IN THIS SECTION

About Us	
Research Groups	\sim
People	
Resources	\sim
Training	\sim

CCB Account and Support

 \sim

From the bench to VR

Computational Biologist Stephen Taylor and his team were awarded an Innovation grant to develop a software package that allows researchers to use virtual reality for scientific research and public engagement.

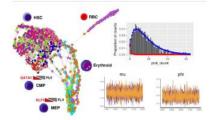
Contact us

Do you have a query or would like to find out who to contact within the Centre?


Email us at ccb@imm.ox.ac.uk

....

Research Groups



Hughes Group

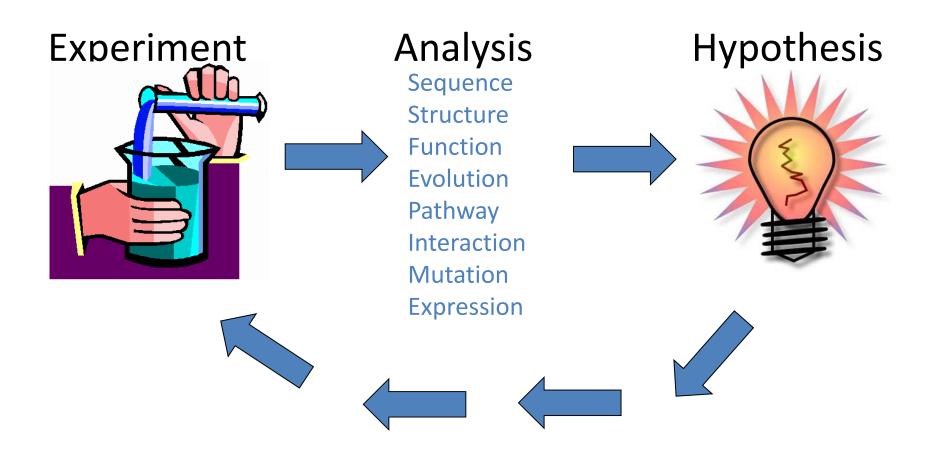
Iotchkova Group: Statistical Genetics

Koohy Group: Machine Learning and Integrative Approaches in Immunology

Morrissey Group: Quantitative biology of cell fate and tissue dynamics

Sahakyan Group: Integrative Computational Biology and Machine Learning

Sims Group: Computational Genomics


Taylor Group: Analysis, Visualisation and Informatics

ng

Computational Biology and Bioinformatics is all about data...

- Definition
 - Bioinformatics is the computational analysis and storage of biological data
- Derivation
 - informatique French for 'data processing'
- Goal
 - To discover new biological insights using computers and biology

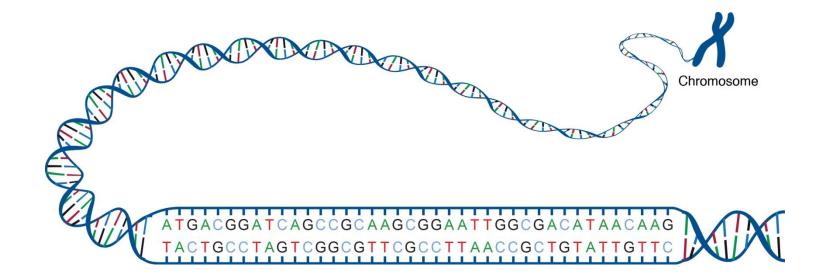
What is bioinformatics?

Why use bioinformatics?

- Find an answer quickly
 - Most in silico biology is faster than in vitro
- Massive amounts of data to analyse
 - Need to make use of all information
 - Not possible to do analysis by hand
 - Can't organise and store information only using lab note books
 - Automation is key
- However!
 - All results of computer analysis should to be verified by biologists

Bioinformatics databases

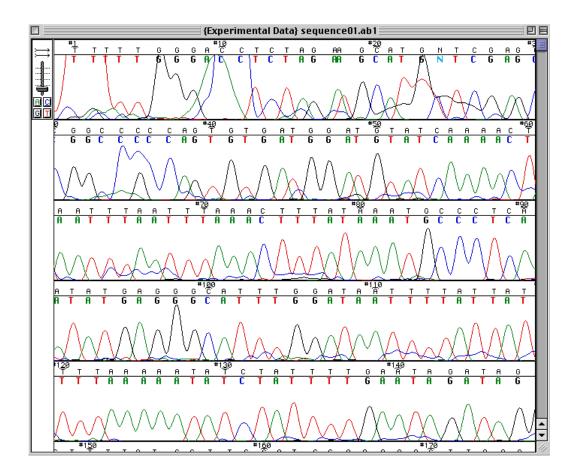
- Public databases are the most important entity in bioinformatics
- Store knowledge about
 - Sequence e.g. EMBL/Genbank
 - HT Sequencing Experiments e.g. GEO
 - Structure e.g. PDB
 - Pathways e.g. KEGG, Metacore
 - Diseases e.g. OMIM
- Can be searched in a variety of ways e.g. keyword, sequence, pattern,

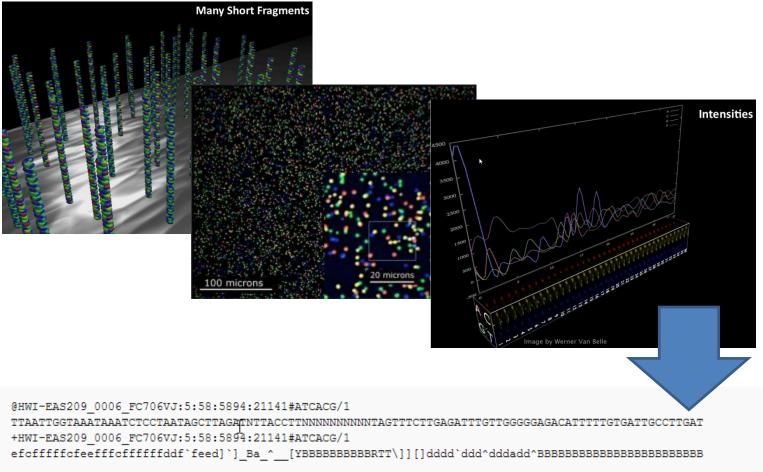

Keyword

Search NCBI o	latabases				He
	pé	53			Search
About 1,673,010	search resu	llts for "p53"			
Literature			Genes		
Books	1,219	books and reports	EST	796	expressed sequence tag sequences
MeSH	158	ontology used for PubMed indexing	Gene	7,879	collected information about gene loci
NLM Catalog	108	books, journals and more in the NLM Collections	GEO Data Sets	8,899	functional genomics studies
PubMed	71,937	scientific & medical abstracts/citations	GEO Profiles	1,403,459	gene expression and molecular abundance profiles
PubMed Central	93,434	full-text journal articles	HomoloGene	38	homologous gene sets for selected organisms
Health			PopSet	94	sequence sets from phylogenetic and population studies
ClinVar	225	human variations of clinical significance	UniGene	414	clusters of expressed transcripts
dbGaP	22	genotype/phenotype interaction studies	Destains		
GTR	110	genetic testing registry	Proteins		
MedGen	72	medical genetics literature and links	Conserved Domains	120	conserved protein domains
ОМІМ	583	online mendelian inheritance in man	Protein	29,695	protein sequences
PubMed Health	71	clinical effectiveness, disease and drug reports	Protein Clusters	15	sequence similarity-based protein clusters
Genomes			Structure	1,082	experimentally-determined biomolecular structures
			Chemicals		
Assembly	1	genomic assembly information			molecular pathways with links to genes, proteins and
BioProject	642	biological projects providing data to NCBI	BioSystems	3,799	chemicals
BioSample	307	descriptions of biological source materials	PubChem BioAssay	10,848	bioactivity screening studies
Clone	0	genomic and cDNA clones	PubChem	8	chemical information with structures, information and
dbVar	1,464	genome structural variation studies	Compound	0	links
Epigenomics	0	epigenomic studies and display tools	PubChem Substance	650	deposited substance and chemical information
Genome	5	genome sequencing projects by organism			
GSS	36	genome survey sequences			
Nucleotide	24,181	DNA and RNA sequences			
Probe	3,507	sequence-based probes and primers			
SNP	6,592	short genetic variations			
SRA	440	high-throughput DNA and RNA sequence read archive			

Bioinformatics Tools

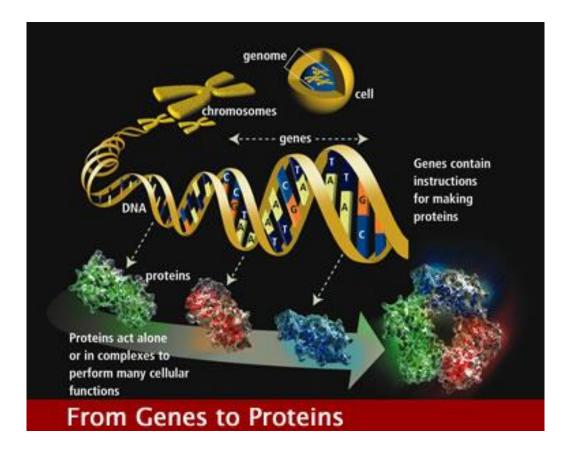
- Hundreds of computer programs
- Many freely available
- Generally available on UNIX or LINUX
- Often interact with bioinformatics databases
- Many accessible via the WWW
- Some require very powerful computers to run on
- CCB provide a environment to do this


DNA

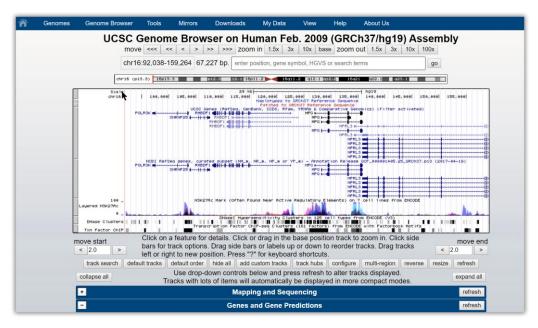

The Human Genome Project (1990-2003)

- Cost \$3 billion
- Could not have been achieved without bioinformatics
- Goals
 - identify all the 20,500 genes in human DNA,
 - determine the sequences of the 3 billion chemical base pairs that make up human DNA
 - *store* this information in databases
 - improve tools for data analysis
 - transfer related technologies to the private sector, and
 - address the ethical, legal, and social issues (ELSI) that may arise from the project.
- Need to bring together and store vast amounts of information from
 - Lab equipment and experiments
 - Computer Analysis
 - Human Analysis
 - Make visible to the world's scientists
- Now (2019) can sequence a genome for less than \$1000

Sanger Sequencing



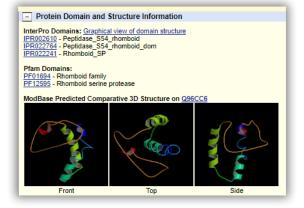
Next Generation Sequencing

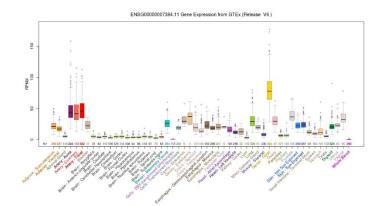

http://werner.yellowcouch.org/Papers/pippres0802/index.html

Central Dogma of Molecular Biology

(http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml)

UCSC Genome Browser (http://genome.ucsc.edu/)

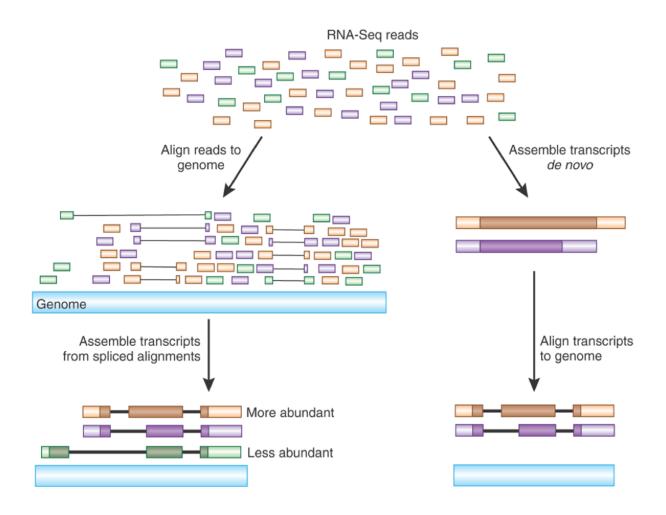



- Comments and Description Text from UniProtKB

Do Description and a second previse 1 developed and a second previse 1. Second previse 1. Additionant Full-Optimistry (and previse) 1. Second previse 1. Additionant Full-Optimistry (and previse) 1. Second previse) 1. Second previse 1. Second prev

TISSUE SPECIFICITY: Highly expressed in cerebellur PTM: N-glycosylated. SIMILARITY: Belongs to the peptidase SS4 family.

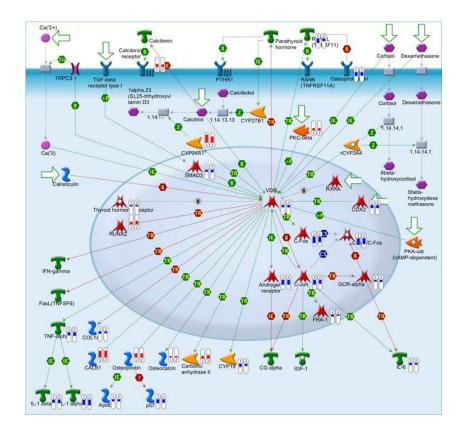
And Calculated is the proposed of the provide of the provided of the



Post Genome (19 years on)

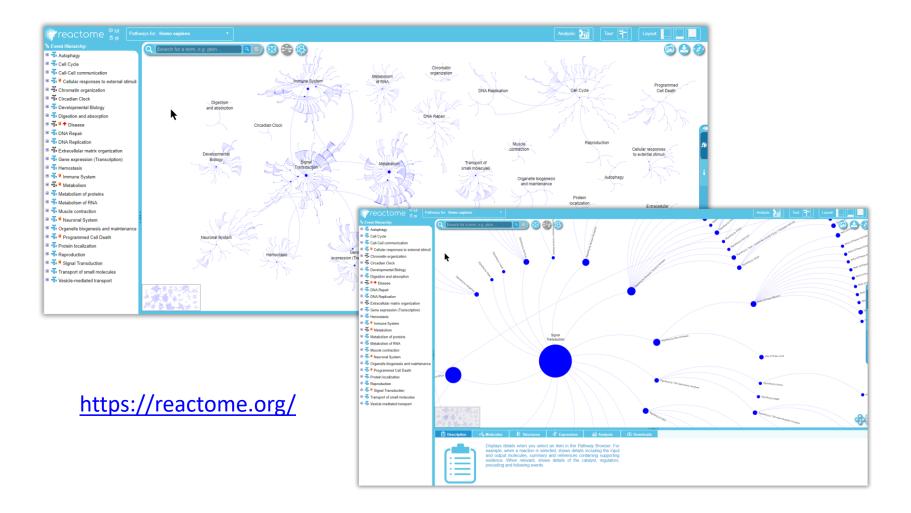
- What do all the genes do?
 - How do they interact?
 - How to cells specialise?
- Junk DNA is not junk after all...
 - 2% Genome contains genes
 - Between 80% (ENCODE) and 25% (Graur et al, 2017) genome seems to have function, usually regulation

Expression Analysis (RNA-Seq)



Hass and Zody, Advancing RNA-Seq analysis, Nature Biotechnology 28:421-423

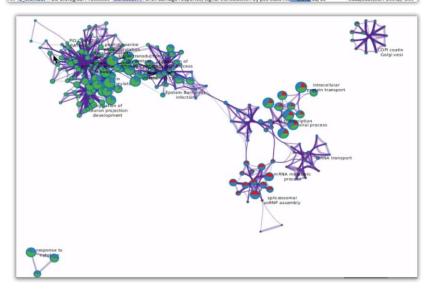
Tools for RNA-Seq


- STAR (Spliced Transcripts Alignment to a Reference). Fast, but uses a lot of memory.
 - Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha, Philippe Batut, Mark Chaisson, Thomas R. Gingeras, STAR: ultrafast universal RNA-seq aligner, *Bioinformatics*, Volume 29, Issue 1, January 2013, Pages 15–21
- Normalisation and quantification of read counts use:
 - edgeR
 - edgeR: a Bioconductor package for differential expression analysis of digital gene expression data." *Bioinformatics*, **26**(1), 139-140)or DESeq2
 - DESeq2
 - Love MI, Huber W, Anders S (2014). "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2." *Genome Biology*, **15**, 550
- **Salmon** Very fast and does quantification. Uses *quasi-mapping* but no alignments to visualise.
 - Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and biasaware quantification of transcript expression. Nature Methods.

Functional Annotation

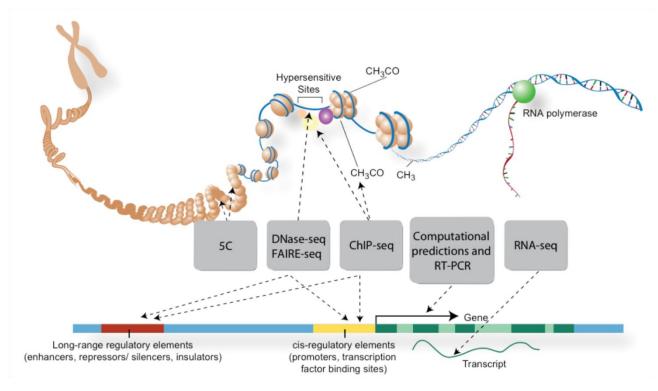
- Metacore
- Ingenuity

Reactome



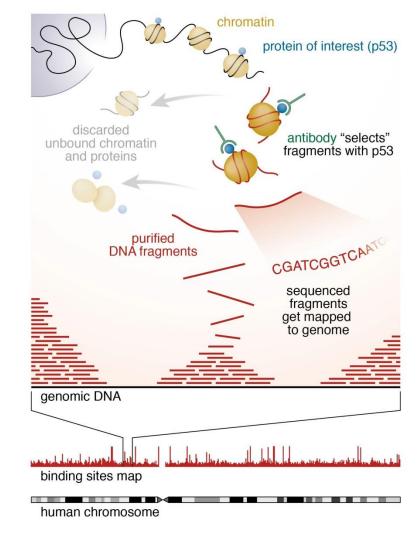
Metascape

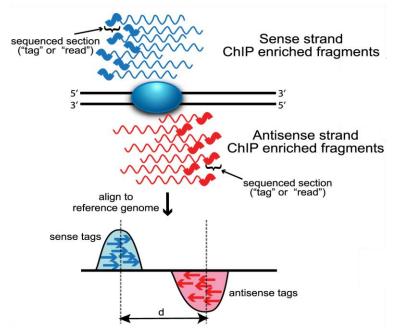
http://metascape.org/


Г	A	в	с	D	E	F	G	н
1	GroupID	Category	Term	Description	LogP	InTerm_InList	Genes	Symbols
2	1_Summary	GO Biological Processes	GO:0016032	viral process	-18.851	49/771	156,527,2033,	ADRBK1,ATP
3	1 Member	GO Biological Processes	GO:0016032	viral process	-18.851	49/771	156,527,2033,	ADRBK1,ATP
4	1_Member	GO Biological Processes	GO:0044764	multi-organism cellular process	-18.549	49/784	156,527,2033,	ADRBK1,ATP
5	1_Member	GO Biological Processes	GO:0044419	interspecies interaction between organisms	-18.086	50/838	156,527,1536,	ADRBK1,ATP
6	1_Member	GO Biological Processes	GO:0044403	symbiosis, encompassing mutualism through parasitism	-18.086	50/838	156,527,1536,	ADRBK1,ATP
7	1_Member	GO Biological Processes	GO:0051351	positive regulation of ligase activity	-12.291	16/101	5347,5682,56	PLK1,PSMA1
8	1_Member	GO Biological Processes	GO:0051437	positive regulation of ubiquitin-protein ligase activity invo	-12.099	14/72	5347,5682,56	PLK1,PSMA1,
9	1_Member	GO Biological Processes	GO:000020	protein-polyabigattination		1/212	331,4734,568	XIAP, NEDD4,
10	1_Member	GO Biological Processes	GO:005144	positive regulation of ubiquitin-protein transferase activity	-11.468	5/96	5347,5682,56	PLK1,PSMA1,
11	1_Member	GO Biological Processes	GO:2000060	positive regulation of protein ubiquitination involved in ut	-10.921	14/87	5347,5682,56	PLK1,PSMA1,
12	1_Member	KEGG Pathway	hsa03050	Proteasome	-10.903	11/44	5682,5683,568	PSMA1,PSM/
13	1_Member	GO Biological Processes	GO:0051436	negative regulation of ubiquitin-protein ligase activity invo	-10.714	14/90	5347,5682,56	PLK1,PSMA1
14	1_Member	GO Biological Processes	GO:2000058	regulation of protein ubiquitination involved in ubiquitin-	-10.322	14/96	5347,5682,56	PLK1,PSMA1,
15	1 Member	GO Biological Processes	GO:0051340	regulation of ligase activity	-10.312	16/135	5347,5682,56	PLK1, PSMA1,
16	1_Member	GO Biological Processes	GO:0051444	negative regulation of ubiquitin-protein transferase activit	-10.260	14/97	5347,5682,56	PLK1,PSMA1,
17	1_Member	GO Biological Processes	GO:0051352	negative regulation of ligase activity	-10.198	14/98	5347,5682,56	PLK1,PSMA1,
18	1_Member	GO Biological Processes	GO:0051439	regulation of ubiquitin-protein ligase activity involved in n	-10.137	14/99	5347,5682,56	PLK1,PSMA1,
19	1_Member	GO Biological Processes	GO:0032446	protein modification by small protein conjugation	-9.776	37/821	331,4734,492	XIAP, NEDD4,
20	1_Member	GO Biological Processes	GO:0031398	positive regulation of protein ubiquitination	-9.579	17/174	331,5347,568	XIAP, PLK1, PS
21	1_Member	GO Biological Processes	GO:0031145	anaphase-promoting complex-dependent proteasomal ub	-9.565	14/109	5347,5682,56	PLK1,PSMA1,
22	1_Member	GO Biological Processes	GO:0002479	antigen processing and presentation of exogenous peptide	-9.412	12/75	1536,5682,56	CYBB, PSMA1
23	1_Member	GO Biological Processes	GO:0051438	regulation of ubiquitin-protein transferase activity	-9.302	15/135	5347,5682,56	PLK1,PSMA1,
24	1_Member	GO Biological Processes	GO:0042590	antigen processing and presentation of exogenous peptide	-9.140	12/79	1536,5682,56	CYBB, PSMA1
25	1_Member	GO Biological Processes	GO:1903322	positive regulation of protein modification by small protein	-9.091	17/187	331,5347,568	XIAP, PLK1, PS
26	1_Member	GO Biological Processes	GO:0044265	cellular macromolecule catabolic process	-9.055	38/913	3146,3837,41	HMGB1,KPNI
27	1_Member	GO Biological Processes	GO:0006521	regulation of cellular amino acid metabolic process	-9.021	11/64	5682,5683,56	PSMA1,PSM/
28	1_Member	GO Biological Processes	GO:0042787	protein ubiquitination involved in ubiquitin-dependent pr	-8.962	16/166	4734,5347,56	NEDD4, PLK1,
29	1 Member	GO Biological Processes	GO:0006977	DNA damage response, signal transduction by p53 class me	-8.872	11/66	5682,5683,56	PSMA1,PSM/

Gene Expression Omnibus (GEO)

S NCBI									GEO
BI = GEO = Repository browser =	Samplas						GEO Publ	ications FAQ I	MIAME Email GE
eries Samples	Platforms DataSets	Summary Advanced search							
Le .	Search 1,163	3,446 samples Export				<<	< Page 1	of 58,173 > >>	Page size 20
ccession • Title				/pe + Organism(s)		Series		Contact	Release date
SM952626 SPC/cRaf mouse d			RNA	Mus musculus	1 🖬 GPL6096	GSE38948	CEL CHP	Kishor Bapu Londhe	Jun 23, 201
	lysplasia 67.3_71.5 male 5 months		RNA	Mus musculus	1 🖬 GPL6096	GSE38948	CEL CHP	Kishor Bapu Londhe	Jun 23, 20
M952628 SPC/cRaf mouse d			RNA	Mus musculus	1 🖬 GPL6096	GSE38948	CEL CHP	Kishor Bapu Londhe	Jun 23, 20
M952629 SPC/cRaf mouse d			RNA	Mus musculus	1 🖬 GPL6096	GSE38948	CEL CHP	Kishor Bapu Londhe	Jun 23, 20
1952630 non-transgenic mo			RNA	Mus musculus	1 🖬 GPL6096	GSE38948	CEL CHP	Kishor Bapu Londhe	Jun 23, 20
1952631 non-transgenic me	ouse 67.5 female 7 months		RNA	Mus musculus	1 🖬 GPL6096	GSE38948	CEL CHP	Kishor Bapu Londhe	Jun 23, 20
1952632 non-transgenic ma			RNA	Mus musculus	1 🖬 GPL6096	GSE38948	CEL CHP	Kishor Bapu Londhe	Jun 23, 20
1952633 non-transgenic m	HOME SEARCH SITE MAP				GEO Pub ₉₆	GSE38948	CEL CHP	Kishor Bapu Londhe	Jun 23, 20
1952634 non-transgenic m	NCBI > GEO > Access	ion Display 🛛			96	GSE38948	& CEL CHP	Kishor Bapu	Jun 23, 20
1952635 SPC/c-Raf mouse	GEO help: Mouse over scr	een elements for information.			96	GSE38948	& CEL CHP	Kishor Bapu Londhe	Jun 23, 20
1952636 SPC/c-Raf mouse					96	GSE38948	CEL CHP	Kishor Bapu Londhe	Jun 23, 20
1952637 SPC/c-Raf mouse	Scope: Self 🔻	Format: HTML Amount: Quick GEO acces	sion: G	SM952626	GO 96	GSE38948	CEL CHP	Kishor Bapu Londhe	Jun 23, 20
1952638 SPC/c-Raf mouse	Comple COMOTOG	0	-t-Cete	fee COMOSOGOS	96	GSE38948	& CEL CHP	Kishor Bapu	Jun 23, 20
952639 SPC/c-Raf mouse	Sample GSM95262		atasets	for GSM952626	96	GSE38948	CEL CHP	Londhe Kishor Bapu	Jun 23, 20
952640 SPC/c-Raf mouse	Status l Title	Public on Jun 23, 2014 SPC/cRaf mouse dysplasia 65.1 male 6 months			96	GSE38948	CEL CHP	Londhe Kishor Bapu	Jun 23, 20
1952641 SPC/c-Raf mouse	Sample type	RNA			96	GSE38948	CEL CHP	Londhe Kishor Bapu	Jun 23, 20
1952642 SPC/c-Raf mouse	Sample type				96	GSE38948	& CEL CHP	Londhe Kishor Bapu	Jun 23, 20
1314708 ECFC L1 1	Source name	dysplasia male			154	GSE54416	SRA Experiment	Londhe Terri DiMaio	Jun 23, 20
M1314709 ECFC_L1_2	Organism	Mus musculus			154		SRA Experiment		Jun 23, 201
41314710 ECFC_L1_3	Characteristics	age: 6 months			154	GSE54416	SRA Experiment	Terri DiMaio	Jun 23, 20
		genotype: SPC/cRaf transgenic tissue: lung dysplastic lesion Sex: male			- 1				
	Growth protocol	Four samples each for dysplastic and adenoc samples from healthy non-transgenic lungs v micro-dissection. Lung tissue slices of 10µm cryomicrotome (MLCROM GmbH, Walldorf, Germa membrane slide (Zeiss GmbH) and stained v desired cells either dysplastic or transgenic (n normal) or adenocarizmona or healthy non-t- were laser microdissected and collected in an LMPC (Laser Micro-dissection Pressure Catapulti	vere se vere pr iny) and vith Ha icroscop ansgen adhesiv	lected for laser epared using a l fixed over PEN ematoxylin. The ically unaltered, ic alveolar cells e cap using the					
	Extracted molecule	total RNA							
	Extraction protocol	Four samples each for dysplastic and adenoc samples from healthy non-transgenic lungs v micro-dissection. Lung tissue slices of 10,0m cryomicrotome (MICROM GmbH, Walldorf, Germa membrane slide (Zeiss GmbH) and stained v desired cells either dysplastic or transgenic (r normal) or adenocarizmona or healthy non-t- were laser microdissected and collected in an LMPC (Laser Micro-dissection Pressure Catapulti	vere se vere pr ny) and vith Ha icroscop ansgen adhesiv	lected for laser epared using a l fixed over PEN ematoxylin. The ically unaltered, ic alveolar cells e cap using the					
	Label Label protocol	biotin rRNA reduction was done using Ribominus Invitrogen, Carlsbad, California). Single-strande from the amplified cRNA with the WT CDNA Synth then fragmented and labeled with the WT (Affymetrix).	d cDNA esis Kit	was generated (Affymetrix) and					


ENCODE (Encyclopedia of DNA Elements)


http://genome.ucsc.edu/ENCODE/

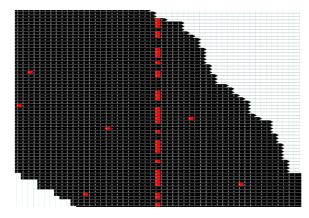
What Controls Expression?

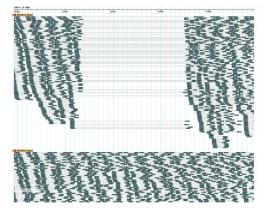
ChIP-Seq

Tools for ChIP-Seq

- 1. Align using Bowtie
- 2. Peak call using Model-based Analysis of ChIPseq (MACS)
- 3. Look for motif enrichment using HOMER
- 4. Functional annotation using GREAT

- 1. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25.
- 2. Zhang, Y., Liu, T., Meyer, C.A. *et al.* Model-based Analysis of ChIP-Seq (MACS). *Genome Biol* **9**, R137 (2008) doi:10.1186/gb-2008-9-9-r137
- 3. Heinz S, Benner C, Spann N, Bertolino E et al. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Mol Cell 2010 May 28;38(4):576-589.
- 4. Cory Y McLean, Dave Bristor, Michael Hiller, Shoa L Clarke, Bruce T Schaar, Craig B Lowe, Aaron M Wenger, and Gill Bejerano. "GREAT improves functional interpretation of *cis*-regulatory regions". *Nat. Biotechnol.* **28**(5):495-501, 2010


Multi-Image Genome Viewer


McGowan SJ, Hughes JR, Han ZP, Taylor S MIG: Multi-Image Genome viewer. *Bioinformatics* (2013) **29**: 2477-8

DNA Mutations

Single base mutation

Insertion

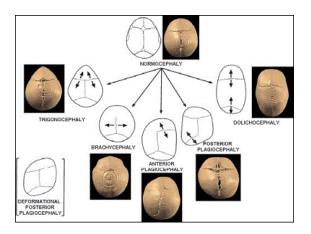
The Single Nucleotide Polymorphism database (**dbSNP**) is a public-domain archive for a broad collection of simple genetic polymorphisms.

(http://www.ncbi.nlm.nih.gov/SNP/)

Tools for variant calling

SAMTOOLS

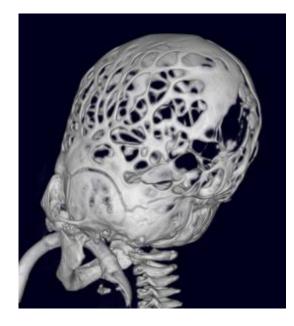
A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Li H Bioinformatics. 2011 Nov 1;27(21):2987-93.



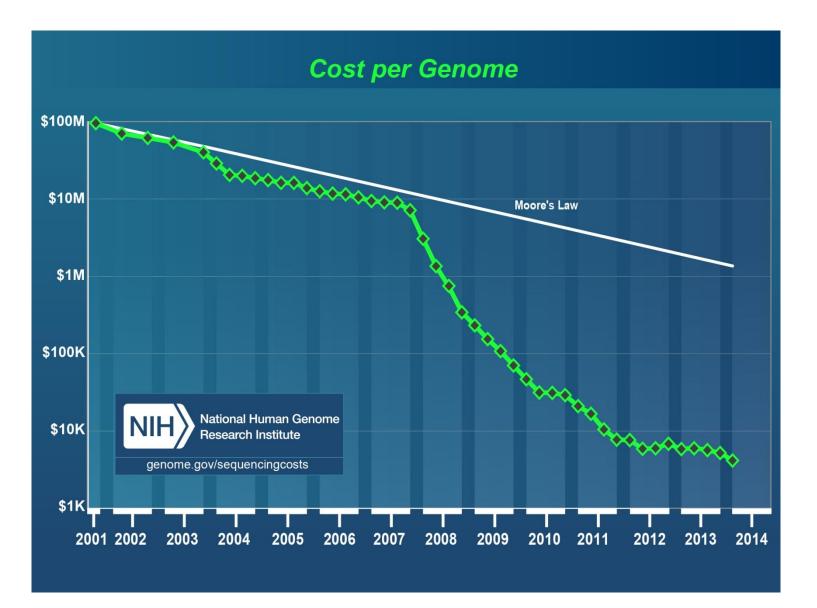
The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA, 2010 *GENOME RESEARCH 20:1297-303*

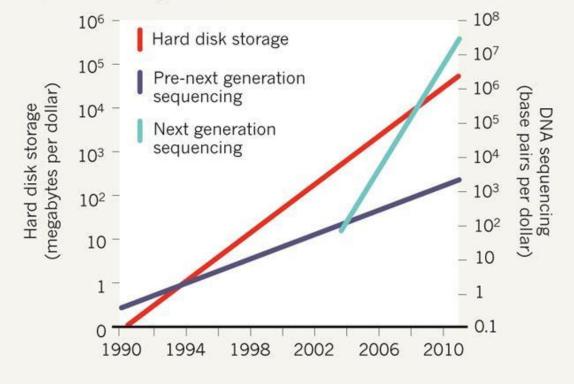
A unified haplotype-based method for accurate and comprehensive variant calling Daniel P Cooke, David C Wedge, Gerton Lunter bioRxiv 456103; doi: https://doi.org/10.1101/456103

Craniosynostosis



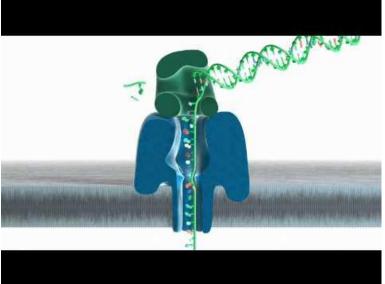
Andrew Wilkie, WIMM


Craniosynostosis

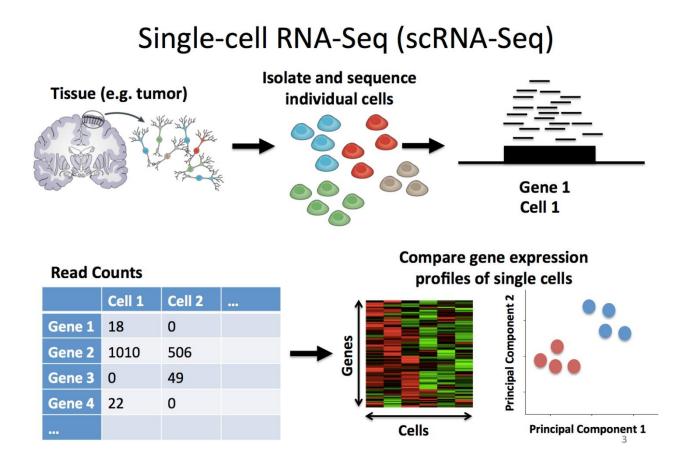


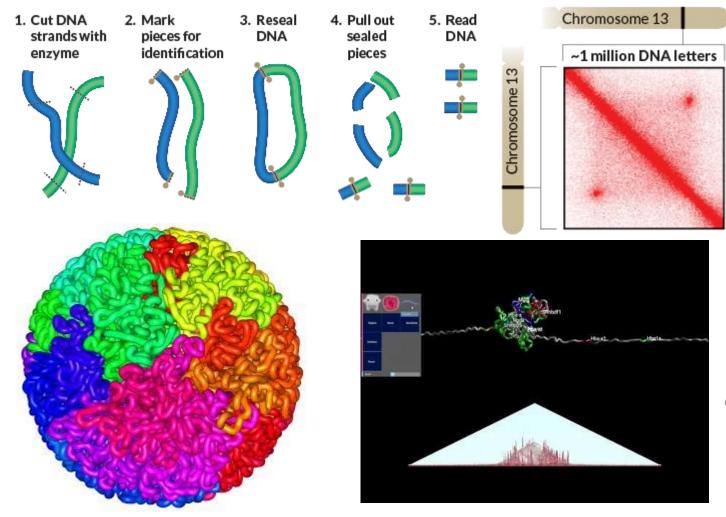
- 100,000 patients with rare inherited disease, common cancers and pathogens from the NHS in England
- Whole Genome Sequencing
- http://www.genomicsengland.co.uk/

DNA AND CHIPS

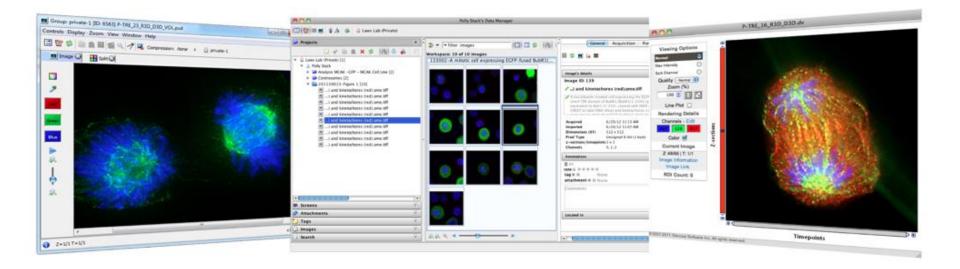

The price of DNA sequencing is falling faster than computer storage costs, making cloud computing an increasingly important tool in genomics.

Source: L. D. Stein Genome Biol. 11, 207 (2010)

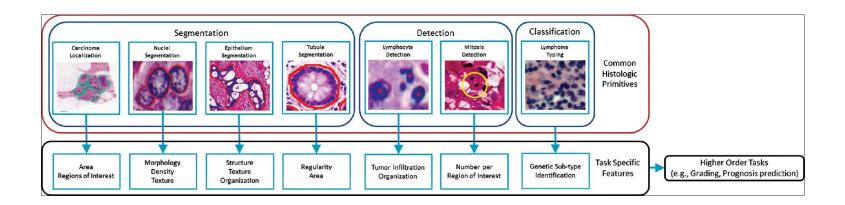

Nanopore sequencing

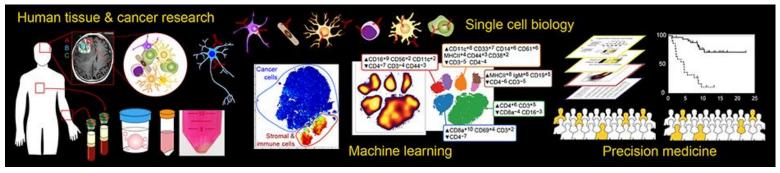

200KB Read Lengths, genome assembly, direct RNA sequencing...

Single Cell Sequencing


https://learn.gencore.bio.nyu.edu/single-cell-rnaseq/

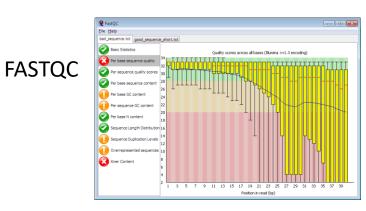
Genome Modelling

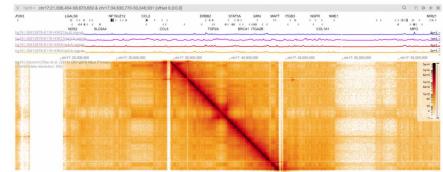



CSynth Bio-Visualisation made interactive

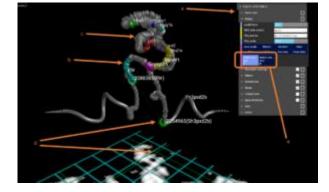
OMERO Image Database

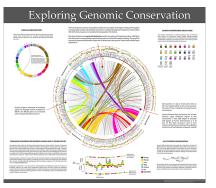
Machine Learning




https://my.vanderbilt.edu/irishlab/

Also being applied increasing to all data types e.g. health records, DNA sequences


Visualisation


HiGlass

Zegami

BabelVR

Coding in R

- Very good for statistics
- Libraries
 - CRAN (12000 packages)
 - Bioconductor (1823 packages)
- Lots of methods for communicating results
- Rstudio is nice graphical environment

Coding in Python

- Most popular language in bioinformatics (and probably data science)
- Used in industry and academic settings
- Very readable
- Great 'glue' for automation
- Lots of libraries for using matrices, machine learning, plotting etc
- https://biopython.org/

Python vs R

Parameter	R	Python
		•
Objective	Data analysis and statistics	Deployment and production
Primary Users	Scholar and R&D	Programmers and developers
Flexibility	Easy to use available library	Easy to construct new models from scratch. I.e., matrix computation and optimization
Learning curve	Difficult at the beginning	Linear and smooth
Popularity of Programming Language. Percentage change	4.23% in 2018	21.69% in 2018
Average Salary	\$99.000	\$100.000
Integration	Run locally	Well-integrated with app
Task	Easy to get primary results	Good to deploy algorithm
Database size	Handle huge size	Handle huge size
IDE	Rstudio	Spyder, Ipthon Notebook
Important Packages and library	tydiverse, ggplot2, caret, zoo	pandas, scipy, scikit-learn, TensorFlow, caret
Disadvantages	Slow High Learning curve Dependencies between library	Not as many libraries as R
Advantages	 Graphs are made to talk. R makes it beautiful Large catalog for data analysis GitHub interface RMarkdown Shiny 	 Jupyter notebook: Notebooks help to share data with colleagues Mathematical computation Deployment Code Readability Speed Function in Python

Learn both!

See review https://www.guru99.com/r-vs-python.html

CCB Training

INTRODUCTORY COURSES

Introductory short courses cover the Unix command line, programming in R and genomics workflows (ChIP-seq, RNAseq). Find out more

OXFORD BIOMEDICAL DATA SCIENCE TRAINING PROGRAMME

This unique training programme consists of 10 week secondments, first building basic data science skills and then applying them to the analysis of your own biomedical data. **Find out more**

More information

- <u>https://www.imm.ox.ac.uk/research/units-and-centres/mrc-wimm-centre-for-computational-biology</u>
- Google "WIMM CCB"
- Tech Helpdesk : <u>genmail@molbiol.ox.ac.uk</u>
- General Questions : <u>ccb@imm.ox.ac.uk</u>