### **Screening: Deletion-KO by Cas9**



Initial screen by PCR: 500 (WT) vs. 300 ( $\Delta$ ) in one PCR rxn. Even better: it is irrespective of ploidy.

 $\rightarrow$  Culture and sequence only predominant 300bp clones.

theral

### **Screening: HDR Events**





#### 1 2 3 4 5 6 7 8 9 10 11 12 13 **M**



| Туре | Frequency |      |  |
|------|-----------|------|--|
| n.d. | 69%       | 9/13 |  |
| HDR  | 31%       | 4/13 |  |

### **SNP-Screening by PCR and REN**



| Туре  | Frequency |       |
|-------|-----------|-------|
| WT    | 73%       | 11/15 |
| 1n/2n | 27%       | 4/15  |
| 3n    | 0%        | 0/15  |

**Dr. Katherine Garnett** 

atherall

stitute of

## Adjusting the Level of QC





| sgRNA | No. of<br>mismatches | No. of<br>NGG genomic<br>sites | No. of NAG<br>genomic<br>sites | No. of<br>off-target<br>sites     |
|-------|----------------------|--------------------------------|--------------------------------|-----------------------------------|
| Ar-a  | 0                    | 1                              | 0                              | N/A                               |
|       | 1                    | 2                              | 2                              | 0                                 |
|       | 2                    | 3                              | 6                              | 1 <sup>a</sup>                    |
|       | 3                    | 26                             | 38                             | 0                                 |
|       | 4                    | 358                            | 446                            | 0                                 |
|       | 5                    | 2,432                          | 3,130                          | 0                                 |
| Ar-b  | 0                    | 1                              | 0                              | N/A                               |
|       | 1                    | 0                              | 0                              | N/A                               |
|       | 2                    | 0                              | 0                              | N/A                               |
|       | 3                    | 9                              | 3                              | 0                                 |
|       | 4                    | 98                             | 82                             | 0                                 |
|       | 5                    | 920                            | 884                            | 0                                 |
| Total | -                    | 3,850                          | 4,591                          | $\begin{pmatrix} 1 \end{pmatrix}$ |

**Table 1** | Summary of variants detected by whole-genome

lyer et al., 2015, Nature Methods

BLISS, BLESS, GUIDE-Seq, Digenome-Seq, Circle-Seq, WGS.

coquoncing

Bolukbasi *et al.*, 2015, Nature Methods Tsai *et al.*, 2017, Nature Methods

### Mouse Models: Targeting Constructs



Weatherall Institute of Molecular

edicine



### KO by Cas9 induced NHEJ



atheral

KO by Cas9-induced NHEJ.
Injection of RNP into oocytes.
~30% with frame-shift, 2/3 useful.
Well-established protocols available.



### **KO** by Exon Deletion





KO by Cas9 mediated exon excision.
Injection of RNPs into oocytes.
5-10% with defined KO.
Well-established protocols available.



### **KI** by Homologous Recombination



atheral

istitute of

**KI** works well in mESCs (> 20-50%). Very much **shorter** homology arms required. Oocyte injection: 0 to <10%...?



## **Refining the Technology**



1 Use of RNPs instead of Cas9 mRNA. Empirically determined.



2 HiFi versions of Cas9 with less OFF-targets.

Slaymaker *et al.*, Science, 2015 Kleinstiver *et al.*, Nature, 2016 Chen *et al.*, Nature, 2017



3 Asymmetric ssODN donors.

Richardson et al., NBT, 2016



4 Long ssDNA donors.

Quadros et al., Genome Biology, 2017



5 2C-HR-CRISPR and Biotin-tagging Gu et al., NBT, 2018



### **Base Editing**





# **Base Editing: Challenges / Applications**





Guide RNA design must place the target base within the activity window

58% approachable.
61% thereof treatable.
→ 40% of total SNPs.

26% of that available to WT Cas9, but **95%** for xCas9...

Human genetic variants associated with disease



Mutation required to reverse pathogenic point mutation



#### MRC Weatherall Institute of Molecular Medicine

### **Refining the Technology II**

- 6 Better Base Editors by expression optimization and ancestral reconstitution: BE4 max. Koblan et al., NBT, 2018
- 7 xCas9 versions with equal specificity and lower PAM stringency: broader target spectrum. Hu et al., Nature, 2018
- 8 Base editor evolution: higher specificity, narrower target window, less OFF-targets also in mRNA.

pegRNA + DNA

Gruenewald et al., NBT, 2019 Thuronyi et all., NBT, 2019 Cheng et al., Nature Communications, 2019

9 Potential A to C base editing...?

Kim *et al.*, NBT, 2019

**10** Prime editing with pegRNA Anzalone *et al.*, Nature, 2019









### **Clinical Applications**



#### Ex vivo approaches



### In vivo

### First in vivo CRISPR candidate enters the clinic

Editas Medicine and its partner Allergan have advanced AGN-151587 into a phase I/II trial for patients with Leber congenital amaurosis type 10, a rare and inherited form of blindness.

AGN-151587, previously called Edit-101, is the first CRISPR–Cas9 genomeediting medicine that is administered directly to patients. Doctors inject the adeno-associated virus-based candidate subretinally, so that it can cut out a mutation in the *CEP290* gene in photoreceptor cells in the eye. Spark Therapeutics and Novartis's voretigene neparvovec, the first gene therapy to gain approval in the US, corrects a different form of the inherited eye disease, by introducing a normal copy of the *RPE65* gene to patients with Leber congenital amaurosis type 2.

> Mullard, Nature Reviews Drug Discovery, September 2019

Several 100's of publications 2013 to 2019

# **Clinical Example: Muscular Dystrophy**



### A key muscle protein – **Dystrophin**.

Patients with damaged Dystrophin gene have severe muscle wasting, known as **Muscular Dystrophy**.

Genome editing by CRISPR-Cas9 is applied to tackle this mutation in a mouse model.







### **Clinical Example: Muscular Dystrophy**





eatherall

nstitute of Molecular Medicine

Nelson *et al.*, Science, 2015 Long *et al.*, Science, 2015





Amoasii et al., Science, 2018



The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

September 11<sup>th</sup>, 2019

### CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia

Lei Xu, M.D., Ph.D., Jun Wang, M.D., Ph.D., Yulin Liu, B.S., Liangfu Xie, B.S.,

CRISPR-edited *CCR5*-ablated donor HSPCs (CCR5-null are largely resistant to HIV1 infection) were transplanted into an HIV+/ALL+ patient. The acute lymphoblastic leukemia was in <u>complete remission with full donor chimerism</u>, and donor cells carrying the ablated *CCR5* persisted for more than 19 months without gene editing-related adverse events. The percentage of *CCR5* disruption in reconstituted lymphocytes was only approximately 5%, **indicating the need for further research into this approach**.

### Germline Editing...





NEWS · 18 OCTOBER 2019 · CORRECTION 18 OCTOBER 2019

### Russian 'CRISPR-baby' scientist has started editing genes in human eggs with goal of altering deafgene

Denis Rebrikov also told *Nature* that he does not plan to implant gene-edited embryos until he gets regulatory approval.



# **Germline Editing**



**NEWS** • 24 SEPTEMBER 2019

# CRISPR might be the banana's only hope against a deadly fungus

Researchers are using the gene-editing tool to boost the fruit's defences and prevent the extinction of a major commercial variety.



Workers inspect a banana harvest at a farm in Australia.

Nature, 24.09.2019



Rice infested with bacterial blight, which can cause crop losses as high as 75%. Credit: Nigel Cattlin/Alamy

CRISPR-CAS9 GENOME EDITING · 29 OCTOBER 2019

## A crop that feeds billions freed from blight by CRISPR

Bacteria that infect rice are thwarted by changes to rice genes involved in sugar transport.

Nature, 08.11.2019

### Acknowledgments

Prof. Claus Nerlov Prof. Douglas Higgs

Dr. Zoe Holloway Dr. Ryan Beveridge

Dr. Yale Michaels



https://www.imm.ox.ac.uk/research/facilities/genome-engineering-facility philip.hublitz@ndcls.ox.ac.uk