Super-resolution microscopy

K. Korobchevskaya

The WIMM DPhil Course November 2018

Outline

- Introduction
 - Resolution in optical microscopy
 - PSF and image formation
 - Diffraction limit
- Super-resolution techniques
 - STED concept, examples
 - PALM/STORM concept, examples
 - SIM concept, examples
- Comparison between SR approaches, applications, pros and cons

10.0 s

Fluorescence microscopy

LOW INVASIVE

no harsh preparation suitable for live cell imaging

HIGHLY SPECIFIC

labels highlight objects of interest

ZEISS LSM 880 with Airyscan: Mitosis in HeLa Kyoto EB3 EGFP Carl, Zeiss

Super resolution microscopy

Spatial resolution and Imaging approaches

Excitation and detection approaches in fluorescence microscopy

Excitation and detection approaches in fluorescence microscopy

Diffraction limit in optical microscopy

Diffraction limit

Real object

Diffraction limited image

Numerical Aperture (N.A.)

Numerical Aperture (N.A.)

 $NA = n(sin \Theta)$ **Higher NA** \rightarrow **Obtaining more light**/ Θ More structural information n \rightarrow **Higher resolution**

Diffraction limit

$$d = rac{\lambda}{2n\sin heta} = rac{\lambda}{2\mathrm{NA}}$$

real object

High NA

Low NA

Can we go beyond the diffraction limit?

$$d=rac{\lambda}{2n\sin heta}=rac{\lambda}{2\mathrm{NA}}$$
 Shorter wavelength Higher NA

The Nobel Prize in Chemistry 2014

Photo: Matt Staley/HHMI Eric Betzig Prize share: 1/3

Photo: Wikimedia Commons, CC-BY-SA-3.0

Stefan W. Hell Prize share: 1/3

Photo: K. Lowder via Wikimedia Commons, CC-BY-SA-3.0

William E. Moerner

Prize share: 1/3

Single molecule localization methods STORM/PALM

STORM/PALM microscopy overview

Xu at al., Actin, spectrin and associated proteins form a periodic cytoskeleton structure in axons, Science 339 452-456 (2013)

- Wide field technique (camera acquisition)
- Resolution is only limited by labelling quality
- Require careful image reconstruction, especially for multicolour colocalization

~ 30 Å

Single molecule localization

Fitting Single-Molecule Pixel Data to a Gaussian Function

http://zeiss-campus.magnet.fsu.edu/articles/superresolution/palm/practicalaspects.html

Single molecule localization

Conventional fluorescence microscopy: fluorophores too close to resolve Multiple rounds of stochastic activation and localisation of individual molecules Single molecule image Centroid localisation Computer rendered superresolution image

STochastic Optical Reconstruction Microscopy (STORM)/ Photo-Activated Localization Microscopy (PALM)

http://zeiss-campus.magnet.fsu.edu/articles/superresolution/palm/practicalaspects.html

STochastic Optical Reconstruction Microscopy (STORM)/ Photo-Activated Localization Microscopy (PALM)

Resolution depends on **LOCALIZATION PRECISION** and **MOLECULAR DENSITY** of fluorescent probes in the specimen.

Importance of molecular density for resolution for PALM/STORM

Localized Molecule Density in Single-Molecule Superresolution Imaging

http://zeiss-campus.magnet.fsu.edu/articles/superresolution/palm/practicalaspects.html

Single Molecule Localisation Microscopy summary

PROS:

- Outstanding resolution performance up to 10 nm
- Ideal for single molecule co-localisation
- Quantitative data

CONS:

- Long acquisition times
- Fitting algorithms
- Need of specific dye
- Labelling density is crucial for high resolution

STED

STED microscopy overview

Actin filaments in resting T-cell taken on Leica STED system at WIMM image courtesy M.Fritzsche

- Confocal microscopy based super-resolution technique (laser scanning)
- Reduces the effective PSF dimensions, so resolution is only limited by sample degradation
- Does not require subsequent image reconstruction

Resolution in STED microscopy

Resolution is defined by the STED beam intensity!

Harke et al 2008, Optics Express

STED image example

STimulated **E**mission **D**epletion (STED) summary

PROS:

- Confocal based good penetration depth, 3D imaging
- Resolution can be tuned by STED beam power
- No image post processing is needed

CONS:

- High resolution require high laser intensity not suitable for prolonged imaging
- Small improvement in z-resoluton compare with confocal
- Beams alignment is critical

Structured Illumination microscopy

SIM microscopy overview

- Wide field technique (camera acquisition)
- Resolution is limited by the ¼ of imaging wavelength
- Requires careful image reconstruction

Actin filaments in activation RBL taken on custom built TIRF-SIM system at KIR

Moiré Interference

Numerical Aperture (NA) of objective and resolution

Real space (x,y) \xrightarrow{FFT} Frequency space (k_x,k_y)

Real space (x,y) \xrightarrow{FFT} Frequency space (k_x,k_y)

Real space (x,y) \xrightarrow{FFT} Frequency space (k_x,k_y)

Structured Illumination doubles the resolution

kseniya.korobchevskaya@kennedy.o x.ac.uk

Widefield

SIM angle 1

SIM angle 2

SIM angle 3

SIM reconstructed

angle 2

Cut-off frequency

SIM raw data

SIM reconstructed

Structured Illumination Microscopy summary

PROS:

- Wide field based approach very fast acquisition times, ideal for life cell imaging
- Low illumination powers
- No need for specific dye

CONS:

- Post processing is necessary
- Only moderate resolution improvement up to 90nm

Summary

Schermelleh at al. A guide to super-resolution fluorescence microscopy. J Cell Biol. 2010 Jul 26;190(2):165-75

Microtubules in Drosophila macrophages

Wegel et. al., Scientific Reports 6, : 27290 (2016)

Comparison of the three super-resolution techniques

	SIM	STED	SMLM
Resolution	•		
Separated structures		•	•
Densely packed 3D structures	•		• ?
Unknown structures			
Image reconstruction issues	•	•*	
Sample preparation			
Ease of multi-colour imaging	•		
Cost of purchase and system complexity	•	•	•

Green, good; yellow, medium; red, problematic. *The resolution gain in STED is achieved by optical methods so no reconstruction is strictly needed, however use of image contrast enhancement techniques such as deconvolution can introduce artefacts