

Radcliffe Department of Medicine

RNA methods

Jan Rehwinkel

MRC Human Immunology Unit Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford

Outline

- Working with RNA and extraction techniques
- Detecting, quantifying and characterizing specific RNAs
 - > RT-qPCR
 - > Northern blots
 - > RNA FISH
- Detecting, quantifying and characterizing pools of different RNAs
 - > NanoString
 - > Microarrays
 - > RNA sequencing
- Studying RNA-protein interactions
 - > CLIP
 - > RNA pull-downs
- RNAi
 - > siRNAs
 - > shRNAs

RNA vs. DNA

DNA

RNA

Working with RNA

- soak tube racks, gel trays, combs, etc. in 1% SDS o/n and then rinse with water and 70% EtOH
- clean bench with 1% SDS and then with water
- keep RNA samples always on ice
- avoid repeated freeze-thawing, store aliquots @ -80
- always wear gloves (and change gloves often); facemasks provide extra protection
- use filter tips (reserving a brand new set of pipettes for RNA work is a good idea)
- buy RNase-free water
- avoid equipment used for minipreps (centrifuges!) and cell cycle analysis
- never do plasmid preps and RNA work simultaneously

Extraction of RNA from mammalian cells

- Guanidinium thiocyanate-phenolchloroform extraction ("TRIZOL"):
 - contains phenol & guanidine isothiocyanate
 - disrupts cells and inactivates RNases
 - separates into aqueous and organic phases upon chloroform addition
 - > RNA is precipitated from aqueous phase
 - pros: extracts RNAs of all sizes (but: extraction bias for some miRNAs, PMID 22749402)
 - cons: contains phenol; DNase digest required for RT Q-PCR and other applications
- spin column-based RNA purification ("RNeasy"):
 - disruption of cells in guanidine thiocyanate containing buffer
 - binding of RNA to a silica-based column
 - elution of RNA after washing
 - pros: fast on-column DNase digest
 - cons: only purifies RNAs of >200 nt (but: specialized miRNA extraction kits available)

Detecting, quantifying and characterizing specific RNAs

Reverse transcription

reverse transcription: conversion of RNA to cDNA

- PRIMER: random hexamers
 - oligo(dT): typically T_{12-19} binds poly(A) tail on mRNA
- **REACTION:** denature RNA and primer at 65–75C for 5 minutes, put on ice
 - add buffer, dNTPs and reverse transcriptase enzyme
 - ribonuclease inhibitor (e.g. RNasin or RNaseOUT) helps keep RNA intact
 - incubate at 37-42C for 1–2 hours, heat inactivate

PCR: – use gene specific primers

- number of cycles depends upon abundance of target RNA
- NOT quantitative if used as an assay of mRNA levels

Quantitative Real-Time PCR

A method of 'watching' the PCR as it progresses – allows quantification

- Real-time PCR relies on detecting the PCR product as it accumulates during the reaction
- Detection is based on fluorescence

- 1) Non-specific intercalating dyes (e.g. SYBR green) simply detect increasing amounts of double-stranded DNA accumulating
- 2) Fluorescent probes specific for the target of interest (e.g. TaqMan probes)

Non-specific intercalating dyes

need to ensure that the reaction is specific (run out product at the end / run meltcurves / clone & sequence product)

 Melt-curve: sharp single peak indicates specific amplification diffuse / multiple peaks demonstrate non-specific amplification

TaqMan probes

- Included in the PCR reaction:
 - Specific forward and reverse primers.
 - Probe specific for a sequence within the PCR amplicon.
- The TaqMan probe:
 - Fluorescent reporter dye (e.g. FAM, VIC, NED)
 - Quencher dye often non-fluorescent (NFQ)
 - When linked on the same intact probe, NFQ quenches reporter dye fluorescence (FRET).
 - Probe Tm approx 8-10°C higher than primer Tm
- Generating a signal:
 - 5' exonuclease activity of Taq polymerase displaces and cleaves probe, releasing reporter dye from quencher – FRET disabled.
 - 1 molecule released per amplicon.
 - Signal increases as PCR progresses.

Northern Blots - examples

RNA fluorescence in situ hybridisation (FISH)

b

mRNA

Cy-3-labeled oligo(dT) probe (detects poly(A)-tail of mRNAs)

Poly(A)⁺ RNA WGA Merge Image: Strain Stra

digoxigenin-labeled specific RNA probe for Hsp70

for Hsp70 WGA

multi-colour FISH

Detecting, quantifying and characterizing pools of different RNAs

NanoString

NanoString

- several hundred transcripts analyzed in parallel
- no amplification

Microarrays

in-situ synthesized oligonucleotide arrays

RNA sequencing

preparation of library

- 2. Bind polyA fraction (mRNA)
- 3. Fragment RNA (200 bp)
- 4. Convert to cDNA by random priming

RNA sequencing

Studying RNA-protein interactions

- 1. Identification of RNAs that bind a known protein
- 2. Identification of proteins that interact with a given RNA

Identification of RNAs that bind a known protein

CLIP (cross-link immunoprecipitation)

Identification of proteins interacting with a given RNA

- 1) pull-downs with *in-vitro* transcribed, biotinylated RNA
 - ➔ RNA and protein associate in the test tube

RNA interference

"knock-downs"

miRNA-mediated gene silencing

Bartel, 2004, *Cell* 116:281; Filipowicz, 2005, *Cell* 122:17; Wienholds & Plasterk, 2005, *FEBS Letters* 579:5911; Jackson & Standart, 2007, *Science* STKE:367; Nilsen, 2007, *Trends Genet.* 23:243

miRNA-mediated gene silencing

Bartel, 2004, *Cell* 116:281; Filipowicz, 2005, *Cell* 122:17; Wienholds & Plasterk, 2005, *FEBS Letters* 579:5911; Jackson & Standart, 2007, *Science* STKE:367; Nilsen, 2007, *Trends Genet.* 23:243

miRNA-mediated gene silencing

Bartel, 2004, *Cell* 116:281; Filipowicz, 2005, *Cell* 122:17; Wienholds & Plasterk, 2005, *FEBS Letters* 579:5911; Jackson & Standart, 2007, *Science* STKE:367; Nilsen, 2007, *Trends Genet.* 23:243

siRNAs

- validate knock-down efficiency by Western blot or qRT-PCR → many siRNAs work poorly or not at all
- always use at least two different siRNAs → off-target effects!
- "smartpools" mix of four different siRNAs to reduce off-target effects; needs validation using a different "pool" or by testing siRNAs separately
- results may be difficult to interpret if the knockdown impacts on cell viability
- if possible, also use two control siRNAs

lentiviral vectors

shRNAs vs. siRNAs

	Delivery	Notes
siRNAs	transfection	 transient knockdown fast & easy to use depletion efficiency may vary from cell to cell not all cells are easy to transfect
shRNAs	lentiviral infection	 stable knockdown; cell lines can be selected suitable to many different types of cells labour intensive; lentiviruses = BSL cat 2!