Weatherall Institute for Molecular Medicine DPhil Course 2019 Tuesday, November 19th, 2019

Basic Principles in Proteomics & Metabolomics

Darragh P. O'Brien, PhD

Target Discovery Institute, University of Oxford United Kingdom

darragh.obrien@ndm.ox.ac.uk

Target Discovery Institute

http://www.tdi.ox.ac.uk/mass-spectrometry

Mass Spec @ Old Road Campus

TDI-MS Lab

- LC-MS/MS
- GCxGC-MS
- Ion mobility

1.....

Data Analysis

Proteins/Peptides as Biomarkers: Clinical Proteomics

Molecules as marker candidates:

Sources:

Serum/Plasma Urine Blood Synovial fluid Tears Other body fluids Defined cell populations Cell supernatants Biopsy material Semen Endometrial Lavage Endometrium / lesion Tissues

Clinical Proteomics

PROTEin complement to a genOME

One Genome...

...Two Proteomes

- To characterize functional protein networks and their dynamic alteration during physiological and pathological processes, proteins have to be identified, sequenced, categorized and classified with respect to their function and interaction partners in a protein network
- This is achieved by 'proteomics', the combination of high-resolution protein separation techniques with mass spectrometry and modern sequence database mining tools

Protein Analysis by SDS-PAGE

Sodium DodecyIsulfate Gel-Electrophoresis: protein separation by molecular Weight along an electric gradient, molecules travel through a poly-acrylamide polymer

UNIVERSITY OF OXFORD

Gene versus Protein Expression

Two-dimensional separation

- 1st dimension IEF (paper strips, tube gels)
- -2^{nd} dimension SDS PAGE

2D-gel profile of young and aged muscle

GeneChip array of young and aged muscle

M. Altun, E.Edström, E.Spooner, A. Flores-Moralez E. Bergman, P. Tollet-Egnell, G.Norstedt, B. Kessler and B.Ulfhake. Muscle & Nerve, 2007, 36(2): 223-33.

Protein and Antibody Microarrays

- LUMINEX (different protein families: cytokines, kinome, growth factors etc.)
- Protein arrays
- Antibody arrays
- Nucleic Acid Programmable Protein Array (NAPPA)
- Peptide arrays

Proteomics Applications

- Standard proteome analysis
 - ✓ MW, Protein ID
- Analysis of Multi-Protein Complexes
 - ✓ Protein Tagging, Tandem Affinity Purification (TAP)
- Analysis of post-translational modifications (PTMs)
 - \checkmark > 400 known modifications
 - $\checkmark\,$ Phosphorylation, Acetylation, Methylation, Ubiquitination
 - ✓ Glycosylation, Hydroxylation, Lipid modification
- Quantitative Analysis of proteins in health and disease
 - ✓ Clinical Proteomics
- Systems Biology
 - ✓ Combining large proteomic & genomic datasets
 - ✓ Mathematical modelling

Standard Proteome Analysis Protein identification by MS

- 2D gel
- Silver stain
- Spot isolation
- Enzymatic digestion (Trypsin)
- Chromatography

Tandem Mass Spectrometers

Quadrupole Time-of-flight (QTOF)

Resolution 20,000-40,000 Mass Accuracy 1-5ppm Sensitivity 1fmol

Orbitrap

Resolution 50,000-500,000 Mass Accuracy <1ppm Sensitivity <1fmol

How a mass spectrometer works:

Protein Identification by MS/MS

- Data analysis
- Theoretical sequences from a defined mass
- Generation of a theoretical spectrum
- Matching with the acquired spectrum
- De novo sequencing

Protein Identification by MS/MS Peptide Fragmentation Pattern

...Is The Basis for Sequence Information

(MATRIX) SCIENCE Mascot Search Results

Peptide View

MS/MS Fragmentation of IQQEIAVQNPLVSER

Found in OTUB1_HUMAN, (Q96FW1) Ubiquitin thiolesterase protein OTUB1 (EC 3.4.-.) (Otubain 1) (OTU domain-containing ubiq

Match to Query 88: 1722.985448 from(862.500000,2+) intensity(22678.0000) Cmpd 32, +MSn(863.13), 10.4 min From data file D:\Data\October2005\MB 2_1-B,2_01_1888.d\Analysis.mgf

Click mouse within plot area to zoom in by factor of two about that point

Or, Plot from 200 to 2000 Da

Monoisotopic mass of neutral peptide Mr(calc): 1722.93 Ions Score: 112 Expect: 1e-07 Matches (Bold Red): 35/158 fragment ions using 38 most intense peaks

#	b	b++	b*	b* ⁺⁺	ъ ⁰	Ъ ⁰⁺⁺	Seq.	у	y++	y*	y***	y ⁰	y ⁰⁺⁺	#
1	114.09	57.55					Ι							15
2	242.15	121.58	225.12	113.07			Q	1610.85	805.93	1593.82	797.42	1592.84	796.92	14
3	370.21	185.61	353.18	177.09			Q	1482.79	741.90	1465.76	733.39	1464.78	732.89	13
4	499.25	250.13	482.22	241.62	481.24	241.12	E	1354.73	677.87	1337.71	669.36	1336.72	668.86	12
5	612.34	306.67	595.31	298.16	594.32	297.67	Ι	1225.69	613.35	1208.66	604.84	1207.68	604.34	11
6	683.37	342.19	666.35	333.68	665.36	333.18	A	1112.61	556.81	1095.58	548.29	1094.60	547.80	10
7	782.44	391.72	765.41	383.21	764.43	382.72	V	1041.57	521.29	1024.54	512.77	1023.56	512.28	9
8	910.50	455.75	893.47	447.24	892.49	446.75	Q	942.50	471.75	925.47	463.24	924.49	462.75	8
9	1024.54	512.77	1007.52	504.26	1006.53	503.77	N	814.44	407.72	797.42	399.21	796.43	398.72	7
10	1121.59	561.30	1104.57	552.79	1103.58	552.30	Р	700.40	350.70	683.37	342.19	682.39	341.70	6
11	1234.68	617.84	1217.65	609.33	1216.67	608.84	L	603.35	302.18	586.32	293.66	585.34	293.17	5
12	1333.75	667.38	1316.72	658.86	1315.74	658.37	V	490.26	245.63	473.24	237.12	472.25	236.63	4
13	1420.78	710.89	1403.75	702.38	1402.77	701.89	S	391.19	196.10	374.17	187.59	373.18	187.10	3
14	1549.82	775.41	1532.80	766.90	1531.81	766.41	E	304.16	152.58	287.13	144.07	286.15	143.58	2
15							R	175.12	88.06	1 <i>5</i> 8.09	79.55			1

Batycka and Kessler, 2005

Progress in Proteome Analysis "Proteome/Sub-Proteome Screens"

Human Protein Atlas (tissue based map of human proteome) >17,005 unique proteins, 217 tissues (www.proteinatlas.org)

Human Proteome Map (HPM) >17,294 proteins (84% of human genes, 17 adult, 7 fetal tissues) (http://humanproteomemap.org)

"Proteomes" of 11 cell lines analysed (~10,500 proteins each; >90% of the total proteome ??) (Geiger T *et al.,* MCP 2012)

>50,000 phosphorylation sites known >16,000 acetylation sites known >6,000 glycosylation sites known (www.phosida.com)

>17,000 ubiquitylation sites known (https://gygi.med.harvard.edu/ggbase)

>8,000 proteins known in human plasma

Proteomic inventory & quantity ~2,000 (Farrah et al., MCP 2011)

Modern Biological MS

UNIVERSITY OF OXFORD

Cutillas P & Kessler BM. 2017, OTCB. In press

Proteome Depth

Method	Protein amount	Protein groups	Time
'Ultra depth' Multi Enzyme, Liquid Chromatography High-pH reverse phase pre-fractionation, less demanding fraction concatenation.	2 – 5 mg >10 ⁸ cells	10,000 – 13,000	+++++
'High depth' Liquid Chromatography high-pH reverse phase pre-fractionation, demanding fraction concatenation.	500 μg – 1 mg 20-50x10 ⁷ cells	8,000 – 10,000	++++
'Medium depth' Spin column or StageTip based high-pH pre-fractionation. No concatenation	10 μg – 400 μg (spin column) 500,000 to few million cells	4,000 - 8,000	++
'Single shot' No pre-fractionation.	< 10 µg Few thousand cells	3,000 - 4,000	+

Protein group numbers: ~20% less for SILAC experiments

Quantitation of Differentially-Regulated Proteins

LC/MS/MS^E

Label-Free Quantitation by MS^E

Xu D, Suenaga N, Edelmann MJ, Fridman R, Muschel RJ, Kessler BM. Mol Cell Proteomics 2008 7(11): 2215-2228

SILAC Stable isotope labeling of amino acids in cell culture

Lys	${}^{13}C_{6} {}^{2}H_{2}$
Arg	¹³ C ₆ ¹⁵ N ₄

Other MS Quant Methods:

LFQ iTRAQ / TMT SWATH PRM/MRM AQUA

Examples of Biomarkers

Type of Biomarker	Examples			
Biochemical markers	high-sensitivity, C-reactive peptide, plasma B-type natriuetic peptide, plasma homocysteine, urinary albumin excretion.			
	plasma renin activity			
Physiologic markers	Blood pressure, heart rate, pulmonary artery pressure, pulmonary capillary wedge			
	pressures, ventricular premature beats			
Anatomic	Coronary vessel diameter (by coronary			
measures	angiography), carotid intima media			
	thickness (ultrasound), atherosclerotic			
	plaque burden (intravascular ultrasound)			
Histologic markers	Tissue biopsy specimens			
Physical markers	Skin color, weight, height			

Mehul Desai, Norman Stockbridge, Robert Temple. The AAPS Journal 2006; 8 (1) Article 17

Classical Clinical Proteomics (Triangular Approach)

Not significant

Geyer et al., Mol Sys Biol 2017

Classical Clinical Proteomics (Triangular Approach)

Geyer et al., Mol Sys Biol 2017

Advanced Clinical Proteomics (Rectangular Approach)

Geyer et al., Mol Sys Biol 2017

More Accurate Prediction of Diagnosis / Treatment

INSTITUTE

Geyer et al., Mol Sys Biol 2017

Current Limitations: Abundance of Candidate Biomarkers

Needles in a haystack. The abundance of different proteins in blood varies by more than 10 orders of magnitude. Most commercially used biomarkers (yellow dots) are present in only minute quantities in blood, below the level at which most proteins are detected (red dots).

Modified from Science 2008, Vol 321, 1758-1761

Single Cell Proteomics – CyTOF

Sean C et al., Nature Biotechnology 2012

Complexity of Metabolic Pathways and Cellular Processes

LC-MS Strategies for Metabolomics

C18 Reversed Phase C18 Reversed Phase C18 Ion pairing (pH 4.95) HILIC Luna NH2 positive mode negative mode negative mode negative mode

- Discovery metabolomics (AMRT, MS/MS)
- ✓ Targeted metabolomics (MRM/SRM)

Peptides Fatty acids ls, Prostaglandies natic compounds

Fatty acids, lipids Aromatic compounds Steroids

Polar -ve charged compounds

TCA metabolites Glycolysis metabolites Nucleotides Hydrophobic Negatively charged compounds

Glycolysis Metabolites?

TCA metabolites?

Glycolysis metabolites

TCA metabolites

2-Dimensional Gas Chromatography GCxGC-qMS

Detection of >600 Molecular Features ~200 Targeted Metabolites

NMR

GCxGC-MS

Zhanru Yu et al., TALANTA 2017

Metabolite Profiling & Identification

VERY DIFFICULT !!

Counts vs. Mass-to-Charge [m/z]

Further Reading

Aebersold AR, Goodlett DR Mass spectrometry in proteomics ; Chem Rev. 2001 Feb;101(2):269-95. Review.

* Steen H, Mann M.

The ABC's (and XYZ's) of peptide sequencing; Nat Rev Mol Cell Biol. 2004 Sep;5(9):699-711. Review.

Low TY, Heck AJ Reconciling proteomics with next generation sequencing. Curr Opin Chem Biol. 2015 Nov 16;30:14-20.

Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Ong SE, Mann M. Methods Mol Biol. 2007;359:37-52.

- Cravatt BF, Simon GM, Yates JR 3rd
 The biological impact of mass-spectrometry-based proteomics.
 Nature 2007; Dec 13; 450 (7172):991-1000. Review
- Generating and navigating proteome maps using mass spectrometry.
 Ahrens CH, Brunner E, Qeli E, Basler K, Aebersold R.
 Nat Rev Mol Cell Biol. 2010 Nov;11(11):789-801. Review

Please feel free to get in contact to discuss questions/experiments:

Email: darragh.obrien@ndm.ox.ac.uk http://www.tdi.ox.ac.uk/mass-spectrometry

