

WIMM Methods & Techniques Course 2019

Confocal Microscopy

Christoffer Lagerholm Facility Manager Wolfson Imaging Centre

Wolfson Imaging Centre Oxford

https://www.imm.ox.ac.uk/research/facilities/wolfson-imaging-centre

Microscope Equipment

WIDE-FIELD Microscopes

- 1) DeltaVision Elite Live Cell Imaging System
- 2) Leica DMi8

CONFOCAL Microscopes

- 1) Zeiss 780 Inverted Confocal Microscope
- 2) Zeiss 880 Inverted Confocal Microscope with Airyscan detector
- 3) Zeiss 780 Upright Confocal Multiphoton Microscope
- 4) Zeiss Cell Observer Spinning Disc Confocal
- 5) Leica SPEII Inverted Confocal Microscope

SUPER-RESOLUTION Microscopes

- 1) Leica SP8 STED3X Microscope
- 2) Olympus IX83 TIRF Microscope

Image Analysis and Image Storage

- 1) Huygens
- 2) Imaris
- 3) OMERO 100 TB File Server

Wolfson Imaging Centre

The Wolfson Imaging Centre is an open access light microscopy core facility. Our facility includes a wide range of state-of-the-art widefield and confocal light microscopes suitable for imaging a variety of specimens.

Wolfson Imaging Centre Staff

- Facility Manager
- 2 Assistant Managers Dr. Jana Koth & Dr. Silvia Galiani
- Image Analyst Dr. Ulrike Schulze

Staff Duties

- Training (and managing) users,
- System maintenance and validation
- Implementation of new methods

Microscope Users

- ~ 65-70 users/month
- ~ > 1000+ hrs/month

- What can we learn from light microscopy?
- Why so many microscopes?
- Confocal microscopy

What can we learn from light microscopy?

Example 1: Cell cycle dynamics U2OS cells expressing PCNA-Chromobody-RFP imaged on Widefield/TIRF microscope at 24 z-planes/h

Chromotek https://www.chromotek.com/

Example 2: Cell cycle dynamics Fixed time-point; HeLa cells

3D Immunohistochemistry of fixed HeLa cells expressing H2B-GFP (blue) and stained with antibodies for proliferation marker Ki67 (magenta) and tyrosine $-\alpha$ -tubulin (yellow) (Max Intensity projection of z-stack (112 slices); FOV ~150 µm x 100 µm)

Example 3: Quantitating kinetics and relevance of protein motifs upon DNA damage response.

Induction of DNA damage with 405 nm laser

Characterization of role of *SNM1A*, a 5'–3' exonuclease, in DNA damage response (Lonnie Swift, Ghadir Almuhaini, Christoffer Lagerholm, Peter McHugh)

Example 3: Relevance of protein motifs upon DNA damage response.

Characterization of role of *SNM1A*, a 5'–3' exonuclease, in DNA damage response (Lonnie Swift, Ghadir Almuhaini, Christoffer Lagerholm, Peter McHugh)

Why so many different types of microscopes?

Image Formation

Convolution of microscope optics (PSF) with object = Airy Pattern

Different microscopes have different PSFs

Modified from Schermelleh, L. et al. J. Cell Biol. 2010, 190, 165–175.

Image Comparison of Confocal, SIM, STED, and dSTORM

Trans-golgi network in COS7 cells

(TGN46 (Primary+Alexa488 Secondary IgG))

Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison. E Wegel, A Göhler, BC Lagerholm, A Wainman, S Uphoff, R Kaufmann, IM Dobbie. (2016) Scientific Reports 6, DOI: 10.1038/srep27290

(Laser-scanning) Confocal Microscopy

Conventional Wide-field Microscopy

Problem – fluorescence is emitted along entire illuminated cone, not just at focus

Wide-field Microscopy

Triple-labeled cell aggregate in mouse intestine section (Carl Zeiss. Confocal Laser Scanning Microscopy)

The confocal microscope

Laser Scanning Confocal Microscopy

Triple-labeled cell aggregate in mouse intestine section (Carl Zeiss. Confocal Laser Scanning Microscopy)

What do you get?

Axial PSF Intensity Profiles

Wide-field = No pinhole Confocal = Pinhole

Triple-labeled cell aggregate in mouse intestine section (Carl Zeiss. Confocal Laser Scanning Microscopy)

Laser-scanning Confocal Microscope Componets

- 1) Microscope (Inverted or Upright)
- 2) Lasers (Fluorescence Excitation)
- 3) Confocal Scan Module
 - 1) Relay optics (for Collimation)
 - 2) Dichroic mirrors (Reflect lasers to sample & Reflect fluorescence emission to detectors)
 - 1) Scanning mirrors (Enables multi-point imaging)
 - 2) Adjustable Pinhole(s) (Remove out-of-focus component)
 - 3) Spectral filters (Enables selection of spectral window to send to detectors)
 - 4) Single Point Detectors (PMTs, APDs)
- 4) Electronics (lots)
- 5) Software!

Laser-scanning Confocal optical path

2.3 Optical Diagram of the LSM 710 / LSM 780 (Schematic) Relay optics & Dichroics

Fluorescence Detectors

Point Detectors - PMTs

- Must be fast confocal beam spends only a few μ s on each pixel
 - Photomultiplier tubes

Point Detectors - New vs. Old PMTs

Standard Quantum Efficiencies of Detector Technologies

Practical Laser-scanning Confocal Microscopy

Zeiss 780 Inverted Confocal Microscope

- The Zeiss 780 Inverted Confocal is a conventional laser-scanning confocal microscope that has been optimized for high-sensitivity, multi-color 3D imaging.
- This system is equipped with lasers (405, 458, 488, 514, 561, 594, and 633 nm) and detectors for imaging in the visible spectrum (400 < λ < 700 nm).

Zeiss Confocals – Zeiss Zen Software

Locate / Ocular Mode – Widefield (for focusing on specimen and to select are of interest)

Inverted Microscope

Christoffer Lagerholm Wolfson Imaging Facility Weatherall Institute of Moleg	cular Medicine University of Oxford
--	-------------------------------------

Confocal Mode - Acquisition

Locate	Acquisition	Palat. FCS	Processing	Maintain
Experiment (Manager			
not defined	191. 			9 V 8
🗯 Smàrt S	etup	j.	🖋 Show all To	ols New
AF	0	Fi	O ¹	CI
Find Focus	Set Exposure	Live	Continuo	is Seap
Z-Stack				
II Time Seri				~
			V	
🔄 Tile Scan				517.01 (5)
Positions				-
Regions			12000	exprosiment
+ Setup N	lanagen			/
Laser				27
L I Light	Path			Street In
= Acquisit	ion Parameter			
Accus	sition Mode		1	Sural 🛃
🗠 🖘 Onlin	e Processing Opt	iona.	1.1	State at 2
E Trans	mitted Light cam	610	1.4	Smal 2
A. Chan	neb			The second se
 Process 	9-1 -			Ø
🕨 🗢 Stage	19.		18	
incubato	i i			8
• Multidir	mensional Acqu	lisition		
i Infor	mabon On Experi	ment		2
Auto	Save		1	Straight Er

Light Path – Zeiss 780

UNIVERSITY OF OXFORD

Designing the light path in confocal microscopy

Christoffer

Single Imaging Track

Multiple Imaging Tracks

Christoffer Lagerholm

Wolfson Imaging Facility

Weatherall Institute of Molecular Medicine

University of Oxford

7

Image optimization on a Confocal Microscope – Image size, Scan speed, Bit depth, Scan Direction, Zoom, Averaging

	Acquisition M	lode		Vishawal 🖄	
	Objective	EC Plan-Neoflu	ar 10x/0.3		
	Scan Mode	Frame 💌			1. Scan M
	Praine Size	× 512 🗘	X*Y	512	
	Line Step	1 🔻		Optimal	z. inage c
	Spood Pixel Dwell	1.60 µsec Scie	Time 983.04	Max Max	3. Scan sp
. Averaging	Aueraging Number Mode Mathod	1 ▼ Frame ▼ Mean ▼	Bit Depth /	B Bit ₹	I. Bit depth (5. Scan Di
	O Scan Area	image i Poset Sk H	Hoe: 848.5 µm No: 1.66 µm - 0 08 - 0 08 - 0 08	* 848.5 µm 2 2 C 2 7 C 3 7 C	
		Zoom	1	Reset All	6. Magnif
	50.				202 C

- ode (Line/Frame/Spot)
- Size
- beed (Pixel Dwell Time)

Gray Levels, 12-bit=2¹²=4096)

rection (Mono/Bi-directional)

fication Zoom *****

Image optimization on a Confocal Microscope – Optical Zoom

Acquisition Me	de			1	Show all	1
Objective	EC Plan	Neoflua	r 10x/0.3		-	•
Scan Mode	Frame					
Fraine Size	× 512		X * Y	3) Y 🛛	512	1
Line Step	1	-		8	Optimal	
Speed	s			9 :	Max	Te .
Pixel Owell	1.60 µsec	Scen	Time 9	83.04 mse		
Averaging						
Number	1		.eit.D	epth BB	t i	T i
Mode	Frame		Direc	bon 🤿		9 1
Method	Mean	19				
O Scan Area		image 34	ore: 848.	5 µm = 8	98.5 jur	
		Porel Size	E 1.66	um)		
			1	0.0		ŧ.
		1 -	0	0.0	17 2	
		Ð -	8	0.0	: 0	n.
an ear		Zoom 🎙		1.0		
				g	leset All	

Magnification Zoom

6. Magnification Zoom

Nyquist sampling theorem - lateral

- the size of the pixel should be 2-3x smaller than the lateral optical resolution to realize maximum optical resolution

175 x 175

58 x 58

Consequences of not sampling at Nyquist

Oversampling

- pixels small compared to the optical resolution
- specimen needlessly exposed to light
- image needlessly large

Undersampling

- degraded spatial resolution
- photobleaching reduced
- image artefacts (eg. aliasing)

Image optimization on a Confocal Microscope – Laser Power, Pin hole size, Gain (Master), Digital Offset

Tracks		Channe	sls					
Tracl	c1	DAPI						*
🗸 Traci	¢2	FITC						
V Traci	٢3	A594			_			
				Select	t all	Un	select	all
Track	3 405 440 45	I 🔳 8 488	514	⊻ 561	□ 633	780	10/0	
Track	3 405 440 45 nm	I Ⅲ 8 488	514	⊻ 561	633	780	000	•
Track asers	3 405 440 45 nm iny Units = 224	1 111 8 488	514	⊻ 561	633	780 - 2.0 - 89)00 .9	÷
Track 3	3 405 440 45 nm iry Units = 2.2 ; Mode	8 488 m section	514	⊻ 561	633	780 - 2.0 - 89 1.7	000 .9 AU n	÷ nax
Track 3 asers 561 Pinhole 2.09 A	3 405 440 45 nm() iry Units = 2.2 ; Mode Gain (Master	8 488 am section	514	✓ 561 ration	633	780 - 2.0 - 89 17 thoton (000 .9 AU n Counti	ting
Track asers	3 405 440 45 nm() iry Units = 2.2 ; Mode Gain (Master Digital Offset	# 488 # 488 # section	514 0 Integ	⊻ 561 ration	633	780 - 2.0 - 89 17 hoton (- 18 - 0	000 .9 AU n Counti 8	ing

Laser Power
 Pinhole

Adjustment of pin hole size for image optimization

Resolution is limited by the point-spread function

Х

Y

How big should your pinhole be?

Want pinhole to pass entire Airy disk

Х

Airy disk diameter $\approx 1.22 \lambda /NA$

Width of point spread function at pinhole: Airy disk diameter × magnification of lens

- Width of point spread function at pinhole =
 Airy disk diameter × magnification of lens = 1 Airy unit

 resolution of lens × magnification of lens × 2
 - + 100x / 1.4 NA: resolution = 220nm, so 1 Airy unit = 44 μm
 - 40x / 1.3 NA: resolution = 235nm, so 1 Airy unit = 19 μ m
 - 20x / 0.75 NA: resolution = 407nm, so 1 Airy unit = 16 μm
 - 10x / 0.45 NA: resolution = 678nm, so 1 Airy unit = 14 μm

FWHM=Full Width Half-Maximum

Weak signal > open pinhole > more light but thicker section

But beware – Resolution of confocal is improved with smaller pinhole setting – Airyscan/Lightening

Confocal (pinhole=1AU)

Airyscan (pinhole=0.2 AU)

Dr. Ian Dobbie, Antonia Goehler, Alan Wainman, Rainer Kauffman, Micron, Biochemistry, U. of Oxford Dr. Eva Wegel, John Innes Centre (previously Micron, Biochemistry, U. of Oxford)

UNIVERSITY OF OXFORD

Image optimization on a Confocal Microscope – Laser Power, Pin hole size, Gain (Master), Digital Offset

	innels		_			~	Show a	
Tracks		Channe	ls					
Trac	k1	DAPI						
V Trac	k 2	FITC						-
Traci	k 3	A594			_			-
				Selec	t all	Ur	nselect	all
Track	3							
Track Lasers	3 405 440 45 1 nm iry Units = 2.2 ;	8 488	514 0	⊻ 561	633	780	000 9.9 AU r	÷ nax
Track Lasers 6 Pinhole 2.09 A	3 405 440 45 1 nm iry Units = 2.2 ; Mode	am section	514	⊻ 561 ration	633	780 - 2 - 8 1 Photon	000 9.9 AU r Count	÷ nax
Track Lasers 2.09 A A594	3 405 440 45 1 nm	am section	514 0 Integ	561 ration	633	780 — 2 — 8 1 ?hoton	000 9.9 AU r Count	ing
Track Lasers 56 Pinhole 2.09 A A594	3 405 440 45 1 nm iry Units = 2.2 (Mode Gain (Master Digital Offse	am section	514 N Integ	₹ 561 ration	633	780 — 2 — 8 1 Photon — 1	000 9.9 AU r Count 88	ing

- 1. Laser Power
- 2. Pinhole

Gain (Master)
 Digital Offset

Adjustment of detector gain/offset for image optimization

Image optimization on a Confocal Microscope – Image Brightness Scan speed, Zoom, Laser Power, Pinhole size, Gain (Master)

Acquisition N	lode		Showal 🖻
Objective	EC Plan-Neofluar	10x/0.3	÷
Scan Mode	Frame 👻		
Prairie Size	× 512 📫	X*Y Y	512 🛟
Line Step	1 -		Optimal
Speed	· · · · ·	9 7	Max
Pixel Dwell	1.60 µsec Scen T	ime 983.04 ms	et
Averaging			
Number	1	Bit Depth BE	it 🔻
Mode	Frame 👻	Direction 🚍	۲
Method	Mean 👻		
Z HDR			
Mode	Sampling 👻	Frances	1
Intensity	0		1 -
🗢 Scan Area			
	Jimage Sizi	e: 848.5 µm = 8	148.5 µm
81. A	Posel Size	1.66 µm	
		0.0	: c
			: C
2		8-100	: 0
	Zoom (1.0	: 1
			Nesca Pill

Multi-dimensional Acquisition

MRC Researc Council

 Multidimensional Acquisition 								
۲	E Z-Stack	O Show all						
×	🔄 Bleaching	 showall 						
þ.	Time Series	0 Showal						
Þ.	🖶 Tile Scan	Showal						
×	🛱 Positions	B Show all						
×	i Information On Experiment							
×	💾 Auto Save	o showal	N					

Z-stack

Time-lapse

Tile-scan

Christoffer Lagerholm

Wolfson Imaging Facility

- Advanced confocal microscopy
 - Spinning Disc (Fast Confocal at fixed pinhole size)
 - Multi-photon (Deep imaging)
 - Airyscan (Confocal with 0.2AU pinhole)
 - FCS/FRAP/IRM/DNA damage.....

Christoffer Lagerholm

Wolfson Imaging Facility

Weatherall Institute of Molecular Medicine

Example 4: Another Cell cycle example; HeLa cells expressing Histone 2B-GFP imaged on spinning disc microscope

DNA damage induced with 405 nm laser

Characterization of role of *SNM1A*, a 5'–3' exonuclease, in DNA damage response (Lonnie Swift, Ghadir Almuhaini, Christoffer Lagerholm, Peter McHugh)

MRC Research

Spatio-temporal dynamics of T-cell activation. Selected time-points from a time-lapse sequence following Jurkat T-cell activation on OKT3 antibody-coated glass coverslips showing the organization of TCR- β (green) and ZAP70 (red) as a function of the size of the contact formed with the coverslip (simultaneously visualized by interference reflection microscopy). The data shows how rapidly ZAP70 is recruited to the contact, and how quickly the TCR begins to form clusters. However, the experiment also emphasizes that these processes are uncorrelated, at least early on, contrary to accepted belief. The image was generated by

Which imaging technique should I use?

Useful online links

• Zeiss – Microscopy from the very beginning

http://zeiss-campus.magnet.fsu.edu/index.html

Molecular Expressions homepage

http://micro.magnet.fsu.edu/

 Alison J. North. Seeing is believing? A beginners' guide to practical pitfalls in image acquisition. JCB Volume 172(1):9-18 January 2, 2006