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DNA sequencing output

Mardis
Nature 470:198
(2011)



Illumina HiSeq X Ten system – 45 genomes in a day for $1000 each
[1800 Gb/run (3 days) 18,000 genomes/year]
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Human 
genome first 
draft (2000): 
$300 million –
took 15 years

Human Genome 
Project: (1988-
2003): $2.7 billion
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X Ten
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DNA sequencing output
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2nd generation DNA-sequencing - Illumina
Relies on
PCR

Illumina
‘wash-and-scan’
- 1, sequential
flooding in of labeled 
nucleotides
- 2, incorporation of 
nucleotides into the 
DNA strands
- 3, stopping the 
incorporation 
reaction
- 4, washing out the 
excess reagent
- 5, scanning to 
identify the 
incorporated bases 
- 6, prepare the DNA 
templates for the 
next ‘wash-and-scan’ 
cycle 

Massively parallel generation of short fragment reads
Mardis ER 2017 Nat Protocol 12:213



NGS reads

100 cycles, 50 bp PE
150 cycles, 75bp PE

300 cycles, 150bp PE

140 - 240 Million sequences from each end HiSeq2500
~ 400 Million - Nextseq
~ 20 Million - MiSeq
10 Billion - NovaSeq



NGS Sequencing Introduction

200 bp – 500 bp

x
x

600 bp

xTrans



Methods to find disease genes

1. Linkage/association

2. Chromosome abnormality

3. Animal model/ Candidate gene

4. Exome/ whole genome sequencing

5. Complex disease - GWAS



Koboldt et al., Cell 155, 2013

A step change 
in disease gene 
identification



Massively parallel sequencing – first disease gene

2010



Exome sequencing
Pros:
Most disease variants are coding
Cheaper than whole genome – multiplex
Targeted capture is possible
Bioinformatics pipeline easier – fewer variants to deal with

Cons:
Some exons are omitted from capture library
Non-coding regions not covered
GC-rich regions – no baits / poor capture

Gilissen et al. Genome Biology 2011, 12:228



Whole exome or 
targeted 
sequencing

Agilent



Exome seq aligned to genome



WIMM Centre for 
Computational Biology
Steve Taylor
Simon McGowan

Sequencing reads aligned to the 
human genome
Black – reference bases
Red – variant bases

Exome seq aligned to genome



Whole genome sequencing
Pros:
Both exonic and non-coding variants are detected
Uniform coverage
CNVs / translocations detected

Cons:
Cost
Vast amount of data - ~ 4 million variants/ individual
Bioinformatic analysis is challenging – data volume/ variant calling
Sequencing errors over repeats/simple sequences



Disease gene identification

Strategy - Informed by inheritance pattern



Autosomal dominant inheritance

• Disease manifests when only one gene of pair carries mutation
• Sexes usually equally affected
• Risk for siblings and offspring of affected individual = 50%

Modes of inheritance



Autosomal recessive inheritance

• Disease manifests when both genes of a pair carry a mutation
• Sexes usually equally affected

• Offspring risk for parents of affected individual = 25%
• Risk to offspring of affected individuals low (usually <1%)

• More common when parents are consanguineous

• Carrier risk to siblings of affected individual  =  2/3 (67%)

Modes of inheritance



X-linked (recessive) inheritance

• Disease manifests in males, females are carriers
• No male to male transmission; all female offspring of affected males are               
carriers
• Risk to offspring of carrier female for affected male 25%
• Fragile X mental retardation is a special case: about 10% of male
offspring of carrier females are ‘premutation’ carriers

Modes of inheritance



Polygenic inheritance

• Clustering of cases within a family, not conforming to any clear pattern
of inheritance

• Risks must be based on empiric data

Modes of inheritance



Disease gene identification strategies

Pedigrees - mode of inheritance/ which individuals to sequence?

Trio Dominant Recessive

Assume de novo       Familial                               Assume recessive            

(2-3 coding variants/                 variant inherited                 (homozygous or 

generation)                                from 1 parent                      compound heterozygous)

[could be recessive [underpowered,                      [could be dominant]

or dominant]                          long list of variants]

?

? ?

?

?



Disease gene identification strategies
Next generation sequencing analysis generates large numbers of variants

1) Segregation – SNP array - Dominant
2) Segregation – SNP array - Recessive
3)  Cohort studies – shared genes
4)  Trio – de novo/recessive

1) Dominant

SNP array SNP array

SNP arraySNP array
+ Sequence

2) Recessive

SNP array SNP array

SNP arraySNP array
+ Sequence

Genotype (SNP array or 
sequencing) all family 
members to (1) identify 
genomic regions that 
segregate with disease or 
(2) to identify regions of 
homozygosity



1) Segregation – SNP array - Dominant
2) Segregation – SNP array - Recessive
3)  Cohort studies – shared genes
4)  Trio – de novo/recessive

3) Cohort studies

Identify variants in shared genes
1 2 3

4) Trio 

Identify new variants

Disease gene identification strategies
Next generation sequencing analysis generates large numbers of variants



Identifying disease causing variants - which 
variants to follow up?

The genome contains:

100 loss of function mutations with 20 genes having both copies 
inactivated (MacArthur et al., 2012)

218-515 damaging missense mutations with 40-85 present in the 
homozygous state (Xue et al., 2012)

40-100 have previously been annotated as disease causing



Which variants to follow up?
Check that variants haven’t been seen before:
- Exome Variant Server (http://evs.gs.washington.edu/EVS/)
- Exome Aggregation Consortium (http://exac.broadinstitute.org/)
- Local solved exomes/genomes
- Filter against dbSNP – BUT contains clinically relevant variants



Which variants to follow up?
Check that variants haven’t been seen before:
- gnomAD (https://gnomad.broadinstitute.org/)



Which variants to follow up?

Prioritise coding variants and focus on damaging variants?
- nonsense/frameshift/missense - (assess missense with Polyphen2/SIFT/other 

algorithms - ANNOVAR output – CBRG pipeline)
- Conservation – CADD scores (https://cadd.gs.washington.edu/)

Does the affected gene fit with the disease?
Within an interesting gene/pathway?
Expression patterns
Animal models

Is the gene under constraint? 
pLI metric (ExAC)
pLI >= 0.9 - extremely LoF
intolerant

Samocha et al Nature Genetics 46, 944–950 (2014); 
Samocha et al bioRxiv 148353 (2017)



Candidate variant list – what next?

Validate in the family

Proving causation: Find more cases with mutations in the same gene

- Resequence in related cases

- Functional analysis
- Animal models



Interpretation of sequence variants
- gene regulation

AATAAA

Intragenic variation

Coding
Promoter activity

Splicing

Polyadenylation
Transcript Stability3’ UTR

Transcript Stability

??

x x x x x x x xx xx xSNVs

~ 90% GWAS hits are not gene associated



AATAAA

100s-1Ms of  kb

Distribution of Enhancers around their Target Genes 

AATAAA

To appreciated the impact of sequence variants and mutations in 
health and disease
- Understand the biology of distal regulation

Interrogation of molecular events associated gene regulation
• Genome-wide
• High-resolution ChIPseq/RNAseq/Dnase-seq/
• Dynamics /ATACseq/CaptureC

Linking promoters and their regulatory elements represents a major bottleneck



Deletions associated with alpha thalassemia

C16orf35MPG
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Jim Hughes
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C16orf35MPG

0k 50k 100k 150k 200k 250k 300k 350k

Chr16p Tel

Non-coding variants associated with hemoglobinization

⍺ thalassemia⍺ thalassemia



Chromatin Immunoprecipitation (ChIP)

`



Chromatin Immunoprecipitation (ChIP)

Antibodies against 
transcription factors/ 
chromatin 
modifications



C16orf35MPG
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DNase 1 Hypersensitive sites
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C16orf35MPG
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Dnase-seq



C16orf35MPGDHS Erythroid

DHS mES
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ATAC-Seq

Buenrostro et al.,2013

• Recent development
• Protocol relatively easy to setup 
• Rapid NGS protocol

• Adapted for low cell number: 50000 cells 
or even 500

Open-chromatin assays
DNase-Seq

Boyle et al., 2008
Hesselberth et al.,2011
Neph et al., 2012
Hosseini et al.,2013

• Classic method 
• Difficult to setup and optimise (cell-

specific)
• Next generation sequencing protocol 

rather tedious

• Requires high cell number: 30-50 
million cells



Chromatin Accessibility Assay 

Scale
chr11:

50 kb mm9
32,100,000 32,150,000 32,200,000

Il9r
Il9r
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Snrnp25
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Nprl3
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Dnase-seq

ATAC-seq

20 M Cells
160 M Reads

50,000 Cells
3 M Reads

Buenrostro et al Nat Methods 2013
Maria Suciu Unpublished 

1

scATAC-seq



AATAAA

RNA-seqs;  Plural

AAAAAAAAAPolyA+

AAAAAAAAASpecialist

Nascent
AAAAAAAAA

PolyA-



C16orf35MPGK4Me3

DNase1
H3K4Me1
General Co-factors
Transcription Factors

Connecting REs to genes

Gene A Gene B Gene C



Chromosome Conformation Capture (3C)



Capture-C interaction profile

Davies JO et al. Nature Methods 13:74 (2016) 
Davies JO et al. Nature Methods 142:125 (2017)

Chromosome Conformation Capture (3C)

Hughes lab




