
Job Scheduling Using Slurm
A guide

Contents

• Why use Slurm?

• What is Slurm and how does it work?

• How do I know what resources I’ll need?

• Top tips

• Summary

Part 1
Why use Slurm?

What is the advantage of Slurm?

• Using Slurm allows you to run programs on the entire CCB cluster, not
just the login nodes

• This can be an advantage in three different ways:
• You can process larger data sets

• You can run many independent programs at the same time

• You can get a single program to run faster (sometimes)

• You may only need one of these advantages; at other times, you
might benefit from two, or even all three

• Let’s look at these in a bit more detail

Slurm Scenarios

Scenario Symptoms How Slurm helps

Process larger
data sets

• When you try to process a large data set your
program tells you that it ran out of memory

• You get an e-mail from us to say that you
exceeded your memory limits

• You can run programs on
systems with access to more
memory (up to 1TB)

Run more
programs

• You have lots of independent data to process and
can’t continue until it’s all done

• You have multiple independent analyses to
process and want to do them all at the same time

• You can run many copies of the
same program at the same
time

• You can run multiple different
programs at the same time

Run one
program faster

• You have one critical, slow step in your analysis
and can’t do anything else until it finishes

• Some1 programs can use more
CPUs to do a single job faster

1 Some programs can’t; we’ll look into
this in more detail later

Reasons not to use Slurm (yet)

• If none of those apply, you may not need Slurm (yet)
• You don’t have any problems with the size of your data sets

• You don’t have any need for your programs to run faster

• You don’t need to run more programs at once

• This is fine! Interactive programs are allowed on cbrglogin3; however:
• It’s popular and gets a lot of use, so you may find it’s slow

• It has strict memory limits, which you may eventually go over

• If that happens, consider whether Slurm might indeed help

Part 2
What is Slurm and how does it work?

Slurm in a Nutshell: It runs jobs in a queue

• A job is a piece of work you ask Slurm to run on your behalf
• Process this dataset with STAR
• Run this pipeline on this input

• Everyone’s jobs go in a queue and wait to run

• Slurm decides which job goes where in the queue based on
the available resources and a fair-share approach

• When a job gets to the top of the queue it runs on any one of
many different servers, called nodes
• You get the resources on the node you asked for (no more, no less)
• It runs exactly what you told it to run

• Having lots of (mostly) identical nodes means that lots of jobs
can all run at the same time

• When a job finishes, a new job is picked from the queue to run

This is the
key concept
for Slurm -

the rest is all
how to run
your own

jobs

Exercises

• As we go forwards, we’ll give you exercises to try

• We recommend you follow along with these to aid your
understanding

• Log into the cluster and try the commands

• Compare what you see with the examples

Exercise 1 – Checking the queue with squeue
Every job
has a unique
JOBID

You can give
jobs a
NAME too

Jobs are
owned by
USERs

These jobs
are waiting to
run (STate
PenDing)

These jobs
are Running

The job at the
top of the
queue can’t
start until the
necessary
Resources
become free on
a node

These jobs
won’t run until
they get to the
top of the
queue and
have Priority

How long a job has
been running is TIMEd

PARTITION is
an advanced
feature - for
most jobs it’s
just batch

Jobs run on one
(1) specific NODE

Describing your jobs to Slurm

• Each job that you want to run is
described in a job script
• Explains what resources (time, CPU,

memory, etc.) you think you will need
reserving for your use

• Says what you want to do when it
gets to the top of the queue and runs

• The job script is a like an online
order with two parts:
• I want: to run STAR on this data

• Deliver it to: 8 CPUs and 32GB
memory for 18 hours

An example job script
#!/bin/sh

#SBATCH --time=00:30:00
#SBATCH --ntasks=4
#SBATCH --mem=10G

module load rna-star

STAR --genomeDir
/databank/igenomes/Drosophila_melanogaster/
UCSC/dm3/Sequence/STAR/ --outSAMtype BAM
SortedByCoordinate --readFilesIn
C1_R1_1.fq.gz C1_R1_2.fq.gz --
readFilesCommand zcat --outSAMattributes
All --outFileNamePrefix C1_R1_ --
limitBAMsortRAM 7000000000 --runThreadN 4

• The number of CPU cores / threads that we want

• The time we want, here 30 minutes

• The memory we want, here 10 GB

• The commands we
want to run, and;

• The options we want
to give to the program

These options need
to match --ntasks
and --mem or it
won’t work properly

Exercise 2 – Running a job

• cd into your personal /t1-data directory

• cp /t1-data/user/course/slurm/star.sh . (don’t miss the
last “.”)

• cat star.sh

• sbatch star.sh

• watch squeue --me

• Wait for it to end (CTRL+C to exit watch)

• ls -ltrh

• cat the output and take a look (but don’t worry too much, we’re going to
come back to this later)

Part 3
How do I know what resources I’ll need?

Estimating your resources

• This is the most important (and the most tricky) part, because of two
critical factors:
• The more resources you ask for, the lower in the queue you’ll end up

• If you ask for too little memory or time, your job will die before it finishes

• Thus, it’s really important to get it right

• Let’s look at the 3 critical resources: time, CPU cores, and memory

How much time do I need?

• This varies depending on the program and
the data

• If you don’t say how much you want, you
get the default (currently 7 days)

• If you really don’t know, just leave it at
the default

• In a moment, we’ll look at a way to
understand this better

Asking for less time will
mean your job goes

higher in the queue, but
it will die if it overruns

How many CPU cores do I need?

• The answer is typically one of two options:
• The number the documentation recommends; or
• One

• There’s a limit to the number of CPUs a
program can use – adding more gives no
benefit

• It’s really important that you:
• Set the CPUs in the Slurm options
• Set the same number in the program options

• If you really don’t know, set it at 1
• In a moment, we’ll look at a way to

understand this better

Using more CPUs
doesn’t mean

your job will go
faster

How much memory do I need?

• This is the most important to get right

• Again, it depends on the program and the
data

• For this, you really will need to look at it in
more detail using the technique we’ll
explore next

• If you really don’t know, set it at
something moderate, like 20G

Asking for less memory
will mean your job goes
higher in the queue, but
it will die if it uses a lot

more

Job profiling

• When you were looking at your STAR output you may have noticed
extra information and some graphs at the end – this is job profiling
information

• Job profiling is a where a small helper program tracks how much time,
CPU and memory your job uses and provides statistics

• Using these, you can submit a single job with your best guesses, look
at the output, and then have a reasonable idea of what to use for
subsequent jobs of a similar type

• Let’s have a closer look using a run of our STAR example

+--+

| This is the CCB job profiler for your job. For help with |

| the results, please contact genmail@molbiol.ox.ac.uk |

+--+

REQUESTED : 00:30:00

JOB RUN TIME : Days 0, Hours 0, Minutes 2, Seconds 11

UTILISATION : 0.01273148%

+--+

| NOTICE - TIME OVERREQUEST |

| Elapsed job time is less than 10% the time that the job |

| requested. Over requesting time will mean that your |

| jobs take longer to get to the top of the queue. |

+--+

Time profiling

• I asked for 30 minutes
in my job script

• Of this, I only used 2
minutes and 11
seconds and so got an
information notice

• This is useful, because
knowing this I could
manually set it to
something shorter
using --time and my
job would go higher in
the queue.

+--+

| CPU Profiling |

+--+

REQUESTED : 4 CPU cores

MAX USAGE : 3.269 CPU cores

UTILISATION : 62.3870689655% of allocated CPU over job time

DEBUG : 4 3.269 62.3870689655

Max| ***********

| ****************

| **********************

C | *****************************

P | **************************************

U | ***

| **

% | **

| ***

|**

Min+--

Start Job Time End

CPU profiling
• No notice here

• At the peak of my usage
graph, I used just over 3
of my 4 CPU cores

• However, because I
didn’t use them all the
time, I only used 62% of
the total CPU time I was
given

• I also get a graph of
rough CPU use over time,
which is useful when you
get more experienced

+--+

| Memory Profiling |

+--+

REQUESTED : 10.0GB

MAX USAGE : 7099856.0 KB, 6933.45 MB, 6.77 GB

UTILISATION : 34.4338864294% of allocated memory over job time

DEBUG : 10.0 6.77 34.4338864294

Max| ******************************

| *******************************

| ********************************

M | **********************************

e | ***

m | ***

o | ***

r | **

y | **

|**

Min+--

Start Job Time End

Memory profiling

• I told STAR to use 7GB
on the command line
and it used roughly that

• Because of the way
STAR works, it used
more memory in the
second half of the job,
so overall I only used
34% of all the memory I
could have

Exercise 3 – Changing resource parameters

• Change the job to use double the CPUs (remember to set this in both
places) and try it again. What happens to the output? How much
faster does it run?

• Try deliberately changing the number of CPUs requested from Slurm
to half the number that is set in the STAR options, so that it doesn’t
get enough. What happens?

• Run the job but only request 2G memory from Slurm (i.e. not
enough). What happens?

• Run the job but only request 1 minute of time from Slurm. What
happens?

Part 4
Top tips

You can’t go wrong with the default 7 days
job time
• The worst thing that can possibly

happen is that your job needs longer
than that and dies

• If it looks like that’s going to happen
just contact us and we can manually
extend it for you

• Asking for less time will tend to put
you higher in the queue when the
cluster is busy, but that’s all.

Advanced tip

Getting your time close to
what you use does make it
more likely that your job

will run when the cluster is
busy; try to get to within an

order of magnitude (a
week, a day, an hour, etc.)

It’s often quicker to use fewer CPUs
(throughput is king)

REQUESTED : 8 CPU cores

MAX USAGE : 7.893 CPU cores

UTILISATION : 96.9486702128% of allocated CPU over job time

DEBUG : 8 7.893 96.9486702128

Max|**

|**

|**

C |**

P |**

U |**

|**

% |**

|**

|**

Min+--

Start Job Time End

• This is a bit counter
intuitive

• Essentially, it’s often only
worth adding more CPUs
to your job if the profiling
output looks like this

• This is a well running job -
it’s using all the CPU cores
it’s asked for and it’s using
them all the time

It’s often quicker to use fewer CPUs
(throughput is king)

REQUESTED : 8 CPU cores

MAX USAGE : 7.666 CPU cores

UTILISATION : 46.9523343251% of allocated CPU over job time

DEBUG : 8 7.666 46.9523343251

Max|*********************

|*********************

|*********************

C |********************** *

P |********************** *

U |********************** ** *

|********************** **** *

% |********************** ******* ** ** **

|********************** ************** ******************

|**

Min+--

Start Job Time End

• This job looks OK at first
glance, but…

• The number under the max
usage is the utilisation - the
percentage of the total
available CPU time which
was actually used

• In this case it’s less than 50%

• The job only used all those
CPU cores for the first 30-
40% of the time

• For the rest, it barely used 2

It’s often quicker to use fewer CPUs
(throughput is king)

• Let’s say that the first part of the job was
1/3rd the total running time

• If we only ask for 2 CPUs then that part’s
probably going to take 4 times as long

• That would add an extra 3 x 1/3rd time,
for a total of double the runtime

• However, we’re asking for 4 times fewer
CPUs

• Over multiple jobs we’ve doubled the
throughput - 4 of the new jobs can run
for every 2 of the old ones

Advanced tip

If your CPU profile looks like
this example, check whether

you’re running more than
one command per job; if you
are, consider splitting each
job into multiple jobs - one

for each command being run
– so that you can run each

job with just the right
amount of resources

To estimate your memory, profile a single job

• Memory is the hardest resource to get right
• There are three key ways to estimate it; from

most- to least-preferred they are:
• Submit one job with a moderate memory requirement

- if it doesn't have enough it'll run out and die, and you
can try again with more

• Submit one job with a large memory requirement but
a short time limit, say an hour

• Submit one job with a large memory requirement and
let it finish

• The reason that the last is the least preferred is
that we could end up wasting a lot of what we’ve
asked for

• Please do not submit a significant number of jobs
which ask for a lot of memory when you really
don’t know how much they’re going to use

Advanced tip

Memory is relatively
scarce compared to
time and CPU; if you
can run the same job
for longer with less

memory, or more jobs
with each using less

memory by chopping
your data into smaller

chunks, this may be
worth doing

Add 25% - 50% of memory headroom
(maximum)

• Once you have a figure for how much memory
to use, add a small amount of headroom

• 25% - 50% is likely to be sufficient

• Don’t overdo it!
• If it isn’t used, your throughput will drop
• You could waste resources
• You can always increase it again if it turns out to be

too little
• You can always re-run jobs which ran out without

having to re-run jobs which didn’t

• Conversely, if you find that the first one was
using more than typical, reduce it again

Advanced tip

The memory graph can
identify jobs which use

the majority of their
memory for only a small

percentage of the time; if
you can split a single job

into one memory
intensive job and a

second, lower memory
job, you can increase

your throughput

Exercise 4 – Optimising your jobs

• Take a look at the profiling data from your own recent jobs

• How much of the time you asked for are you using? Could you safely
ask for less (think “week, day, hour”)

• How much of your available CPU are your jobs using? Could you
realistically ask for less? Could you split a single job into a separate
CPU intensive job and a second job with less CPUs?

• How much of your requested memory are your jobs using? How
much does it vary between data sets? Could you improve this? Could
you have more, smaller jobs?

Part 5
Summary

Summary

• Using Slurm can allow you to do orders-of-magnitude more science in the
same amount of time

• Getting your job resources correct is not trivial, and takes practice

• Use the profiling data – it’s your number one resource for understanding
your own workflow

• Getting your science done speedily is more about throughput than running
any one job as fast as possible

• If you have any questions or would like extra help please contact us

genmail@molbiol.ox.ac.uk

mailto:genmail@molbiol.ox.ac.uk

