Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Clonality studies of mature cells suggest that the primary transformation event in myelodysplastic syndrome (MDS) most frequently occurs in a myeloid-restricted progenitor, a hypothesis supported by recent studies of purified CD34(+)Thy1(+) hematopoietic stem cells (HSCs) in cases with trisomy 8 (+8). In contrast, we recently demonstrated that a lymphomyeloid HSC is the target for transformation in MDS cases with del(5q), potentially reflecting heterogeneity within MDS. However, since +8 is known to frequently be a late event in the MDS transformation process, it remained a possibility that CD34(+)CD38(-)Thy1(+) HSC disomic for chromosome 8 might be part of the MDS clone. In the present studies, although a variable fraction of CD34(+)CD38(-)Thy1(+) cells were disomic for chromosome 8, they did not possess normal HSC activity in long-term cultures and nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice. Mixing experiments with normal CD34(+)CD38(-) cells suggested that this HSC deficiency was intrinsic and not mediated by indirect mechanisms. Furthermore, investigation of 4 MDS cases with combined del(5q) and +8 demonstrated that the +8 aberration was always secondary to del(5q). Whereas del(5q) invariably occurs in CD34(+)CD38(-)Thy-1(+) HSCs, the secondary +8 event might frequently arise in progeny of MDS HSCs. Thus, CD34(+)CD38(-)Thy1(+) HSCs are invariably part of the MDS clone also in +8 patients, and little HSC activity can be recovered from the CD34(+) CD38(-)Thy1(+) HSC. Finally, in advanced cases of MDS, the MDS reconstituting activity is exclusively derived from the minor CD34(+)CD38(-) HSC population, demonstrating that MDS stem cells have a similar phenotype as normal HSCs, potentially complicating the development of autologous transplantation for MDS.

Original publication

DOI

10.1182/blood-2001-12-0188

Type

Journal article

Journal

Blood

Publication Date

01/07/2002

Volume

100

Pages

259 - 267

Keywords

ADP-ribosyl Cyclase, ADP-ribosyl Cyclase 1, Aged, Aged, 80 and over, Antigens, CD, Antigens, CD34, Antigens, Differentiation, Cell Transformation, Neoplastic, Chromosomes, Human, Pair 8, Clone Cells, Female, Hematopoietic Stem Cells, Humans, Male, Membrane Glycoproteins, Middle Aged, Myelodysplastic Syndromes, NAD+ Nucleosidase, Neoplastic Stem Cells, Thy-1 Antigens, Trisomy