Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Several lines of evidence indicate that the megakaryocyte/platelet lineage is crucial in myelofibrosis induction. The demonstration that NOD/SCID mice with functionally deficient monocytes do not develop fibrotic changes when exposed to thrombopoietin (TPO) also suggests an important role for monocyte/macrophages. However, in this animal model, the development of myelofibrosis is dependent on the level of TPO. This study was conducted to investigate whether NOD/SCID mice exposed to high TPO levels mediated by a retroviral vector would be refractory to the development of bone marrow fibrosis. We show that TPO and TGF-beta1 in plasma from NOD/SCID and SCID mice engrafted with TPO-overexpressing hemopoietic cells reach levels similar to the ones reached in immunocompetent mice, and all animals develop a myeloproliferative disease associated with a dense myelofibrosis at 8 wk posttransplantation. Monocytes in NOD/SCID mice are functionally deficient to secrete cytokines such as IL-1alpha in response to stimuli, even under TPO expression. Surprisingly, the plasma of these mice displays high levels of IL-alpha, which was demonstrated to originate from platelets. Together, these data suggest that completely functional monocytes are not required to develop myelofibrosis and that platelets are able, under TPO stimulation, to synthesize inflammatory cytokines, which may be involved in the pathogenesis of myelofibrosis and osteosclerosis.

Original publication

DOI

10.4049/jimmunol.176.11.6425

Type

Journal article

Journal

J Immunol

Publication Date

01/06/2006

Volume

176

Pages

6425 - 6433

Keywords

Animals, Cells, Cultured, Female, Femur, Hematopoiesis, Macrophages, Male, Megakaryocytes, Mice, Mice, Inbred C57BL, Mice, Inbred NOD, Mice, SCID, Monocytes, Primary Myelofibrosis, Radiation Chimera, Spleen, Thrombopoietin, Transduction, Genetic, Transforming Growth Factor beta, Transforming Growth Factor beta1, Up-Regulation