Prof Sten Eirik W Jacobsen

Research Area: Developmental and Stem Cell Biology
Technology Exchange: Cell sorting
Web Links:

FACS Facility

FACS Facility

Unraveling normal and malignant hematopoietic stem and progenitor cell biology at the single cell level

Establishing the normal lineage commitment pathways from hematopoietic stem cells to lineage-restricted progenitors remains an important goal towards unravelling the regulation of blood lineage development, and how this is perturbed in hematological malignancies.

The Jacobsen Lab has for more than a decade had a focus on establishing key lineage commitment/restriction steps and blood lineage pathways in normal hematopoiesis (Adolfsson Cell 2005Boiers Cell Stem Cell 2013Sanjuan-Pla Nature 2013Luis Nature Immunology 2016Drissen Nature Immunology 2016). Distinct cancer stem cells (CSCs) might underlie relapses after complete remissions. The Jacobsen Lab has identified and characterized distinct and rare candidate CSCs and their therapeutic resistance in the chronic hematological malignancies myelodysplastic syndromes (MDS; Tehranchi New Engl J Med 2010Woll Cancer Cell 2014) and myeloproliferative neoplasms (Mead N Engl J Med 2012Giustacchini  Nature Medicine 2017). 

The current focus of the research program of the Jacobsen lab is to apply different genetic tools and functional as well as molecular single cell analysis to unravel the dynamics of stem and progenitor cells in unperturbed hematopoiesis as well as in response to distinct challenges, in mice as well as in normal human subjects. We also model the impact of recurrent genetic lesions at distinct stages of hematopoietic lineage commitment, to identify key cellular targets and molecular events in the transformation from normal to malignant hematopoiesis. In parallel we track the cellular fate and genetic evolution of clonal hematopoiesis in normal individuals as well as pre-leukemic and leukemic stem cells in patients during the natural course of hematopoietic malignancies and following treatment. Through these research directions we aim to identify novel therapeutic strategies towards regenerative hematopoiesis and targeting of leukemic stem cells.

Name Department Institution Country
Prof Claus Nerlov Nuffield Division of Clinical Laboratory Sciences Oxford University, Weatherall Institute of Molecular Medicine United Kingdom
Prof Adam Mead MRCP FRCPath Weatherall Institute of Molecular Medicine Oxford University, Weatherall Institute of Molecular Medicine United Kingdom
Prof Paresh Vyas MRCP FRCP FRCPath Nuffield Division of Clinical Laboratory Sciences Oxford University, Weatherall Institute of Molecular Medicine United Kingdom
Prof Marella de Bruijn Nuffield Division of Clinical Laboratory Sciences Oxford University, Weatherall Institute of Molecular Medicine United Kingdom
Professor Anna Katharina (Katja) A Simon Experimental Medicine Division Oxford University, Weatherall Institute of Molecular Medicine United Kingdom
Prof Jacqueline Boultwood Nuffield Division of Clinical Laboratory Sciences Oxford University, John Radcliffe Hospital United Kingdom
Prof Thomas Milne Nuffield Division of Clinical Laboratory Sciences Oxford University, Weatherall Institute of Molecular Medicine United Kingdom
Dr Andrew Smith Weatherall Institute of Molecular Medicine Oxford University, Weatherall Institute of Molecular Medicine United Kingdom
Prof Tariq Enver Cancer Institute UCL United Kingdom
Eva Hellström Lindberg Department of Haematology Karolinska University Hospital Sweden
Ewa Sitnicka Hematopoietic Stem Cell Lund University Sweden
Prof Seishi Ogawa Department of Pathology and Tumor Biology Kyoto University Japan
Prof Sten Linnarsson Department of Medical Biochemistry and Biophysics Karolinska Institute Sweden
Prof Johanna Olwues Department of Cancer Immunology, K.G. Jebsen Center for Cancer Immunotherapy Oslo Norway
Loughran SJ, Comoglio F, Hamey FK, Giustacchini A, Errami Y, Earp E, Göttgens B, Jacobsen SEW, Mead AJ, Hendrich B, Green AR. 2017. Mbd3/NuRD controls lymphoid cell fate and inhibits tumorigenesis by repressing a B cell transcriptional program. J Exp Med, 214 (10), pp. 3085-3104. | Show Abstract | Read more

Differentiation of lineage-committed cells from multipotent progenitors requires the establishment of accessible chromatin at lineage-specific transcriptional enhancers and promoters, which is mediated by pioneer transcription factors that recruit activating chromatin remodeling complexes. Here we show that the Mbd3/nucleosome remodeling and deacetylation (NuRD) chromatin remodeling complex opposes this transcriptional pioneering during B cell programming of multipotent lymphoid progenitors by restricting chromatin accessibility at B cell enhancers and promoters. Mbd3/NuRD-deficient lymphoid progenitors therefore prematurely activate a B cell transcriptional program and are biased toward overproduction of pro-B cells at the expense of T cell progenitors. The striking reduction in early thymic T cell progenitors results in compensatory hyperproliferation of immature thymocytes and development of T cell lymphoma. Our results reveal that Mbd3/NuRD can regulate multilineage differentiation by constraining the activation of dormant lineage-specific enhancers and promoters. In this way, Mbd3/NuRD protects the multipotency of lymphoid progenitors, preventing B cell-programming transcription factors from prematurely enacting lineage commitment. Mbd3/NuRD therefore controls the fate of lymphoid progenitors, ensuring appropriate production of lineage-committed progeny and suppressing tumor formation.

Unnikrishnan A, Papaemmanuil E, Beck D, Deshpande NP, Verma A, Kumari A, Woll PS, Richards LA, Knezevic K, Chandrakanthan V et al. 2017. Integrative Genomics Identifies the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic Syndromes. Cell Rep, 20 (3), pp. 572-585. | Show Abstract | Read more

Myelodysplastic syndromes and chronic myelomonocytic leukemia are blood disorders characterized by ineffective hematopoiesis and progressive marrow failure that can transform into acute leukemia. The DNA methyltransferase inhibitor 5-azacytidine (AZA) is the most effective pharmacological option, but only ∼50% of patients respond. A response only manifests after many months of treatment and is transient. The reasons underlying AZA resistance are unknown, and few alternatives exist for non-responders. Here, we show that AZA responders have more hematopoietic progenitor cells (HPCs) in the cell cycle. Non-responder HPC quiescence is mediated by integrin α5 (ITGA5) signaling and their hematopoietic potential improved by combining AZA with an ITGA5 inhibitor. AZA response is associated with the induction of an inflammatory response in HPCs in vivo. By molecular bar coding and tracking individual clones, we found that, although AZA alters the sub-clonal contribution to different lineages, founder clones are not eliminated and continue to drive hematopoiesis even in complete responders.

Mead AJ, Neo WH, Barkas N, Matsuoka S, Giustacchini A, Facchini R, Thongjuea S, Jamieson L, Booth CAG, Fordham N et al. 2017. Niche-mediated depletion of the normal hematopoietic stem cell reservoir by Flt3-ITD-induced myeloproliferation. J Exp Med, 214 (7), pp. 2005-2021. | Show Abstract | Read more

Although previous studies suggested that the expression of FMS-like tyrosine kinase 3 (Flt3) initiates downstream of mouse hematopoietic stem cells (HSCs), FLT3 internal tandem duplications (FLT3 ITDs) have recently been suggested to intrinsically suppress HSCs. Herein, single-cell interrogation found Flt3 mRNA expression to be absent in the large majority of phenotypic HSCs, with a strong negative correlation between Flt3 and HSC-associated gene expression. Flt3-ITD knock-in mice showed reduced numbers of phenotypic HSCs, with an even more severe loss of long-term repopulating HSCs, likely reflecting the presence of non-HSCs within the phenotypic HSC compartment. Competitive transplantation experiments established that Flt3-ITD compromises HSCs through an extrinsically mediated mechanism of disrupting HSC-supporting bone marrow stromal cells, with reduced numbers of endothelial and mesenchymal stromal cells showing increased inflammation-associated gene expression. Tumor necrosis factor (TNF), a cell-extrinsic potent negative regulator of HSCs, was overexpressed in bone marrow niche cells from FLT3-ITD mice, and anti-TNF treatment partially rescued the HSC phenotype. These findings, which establish that Flt3-ITD-driven myeloproliferation results in cell-extrinsic suppression of the normal HSC reservoir, are of relevance for several aspects of acute myeloid leukemia biology.

Mortera-Blanco T, Dimitriou M, Woll PS, Karimi M, Elvarsdottir E, Conte S, Tobiasson M, Jansson M, Douagi I, Moarii M et al. 2017. SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells. Blood, 130 (7), pp. 881-890. | Show Abstract | Read more

Mutations in the RNA splicing gene SF3B1 are found in >80% of patients with myelodysplastic syndrome with ring sideroblasts (MDS-RS). We investigated the origin of SF3B1 mutations within the bone marrow hematopoietic stem and progenitor cell compartments in patients with MDS-RS. Screening for recurrently mutated genes in the mononuclear cell fraction revealed mutations in SF3B1 in 39 of 40 cases (97.5%), combined with TET2 and DNMT3A in 11 (28%) and 6 (15%) patients, respectively. All recurrent mutations identified in mononuclear cells could be tracked back to the phenotypically defined hematopoietic stem cell (HSC) compartment in all investigated patients and were also present in downstream myeloid and erythroid progenitor cells. While in agreement with previous studies, little or no evidence for clonal (SF3B1 mutation) involvement could be found in mature B cells, consistent involvement at the pro-B-cell progenitor stage was established, providing definitive evidence for SF3B1 mutations targeting lymphomyeloid HSCs and compatible with mutated SF3B1 negatively affecting lymphoid development. Assessment of stem cell function in vitro as well as in vivo established that only HSCs and not investigated progenitor populations could propagate the SF3B1 mutated clone. Upon transplantation into immune-deficient mice, SF3B1 mutated MDS-RS HSCs differentiated into characteristic ring sideroblasts, the hallmark of MDS-RS. Our findings provide evidence of a multipotent lymphomyeloid HSC origin of SF3B1 mutations in MDS-RS patients and provide a novel in vivo platform for mechanistically and therapeutically exploring SF3B1 mutated MDS-RS.

Giustacchini A, Thongjuea S, Barkas N, Woll PS, Povinelli BJ, Booth CAG, Sopp P, Norfo R, Rodriguez-Meira A, Ashley N et al. 2017. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med, 23 (6), pp. 692-702. | Show Abstract | Read more

Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

Kimura K, Fuegemann CJ, Facchini R, Hesse M, Woll PS, Reinhardt J, Luis T, Ohneda O, Kastenmueller W, Hoelzel M et al. 2017. CD73 labels multipotent mesenchymal stem cells that contribute to bone healing after fracture ACTA PHYSIOLOGICA, 219 pp. 149-149.

Hu T, Fleischmann B, Hesse M, Jacobsen SE, Nedov C. 2017. Stem cell factor marks subpopulations of vascular endothelial cell and cardiomyocyte in the heart ACTA PHYSIOLOGICA, 219 pp. 104-104.

Scharenberg C, Giai V, Pellagatti A, Saft L, Dimitriou M, Jansson M, Jädersten M, Grandien A, Douagi I, Neuberg DS et al. 2017. Progression in patients with low- and intermediate-1-risk del(5q) myelodysplastic syndromes is predicted by a limited subset of mutations. Haematologica, 102 (3), pp. 498-508. | Show Abstract | Read more

A high proportion of patients with lower-risk del(5q) myelodysplastic syndromes will respond to treatment with lenalidomide. The median duration of transfusion-independence is 2 years with some long-lasting responses, but almost 40% of patients progress to acute leukemia by 5 years after starting treatment. The mechanisms underlying disease progression other than the well-established finding of small TP53-mutated subclones at diagnosis remain unclear. We studied a longitudinal cohort of 35 low- and intermediate-1-risk del(5q) patients treated with lenalidomide (n=22) or not (n=13) by flow cytometric surveillance of hematopoietic stem and progenitor cell subsets, targeted sequencing of mutational patterns, and changes in the bone marrow microenvironment. All 13 patients with disease progression were identified by a limited number of mutations in TP53, RUNX1, and TET2, respectively, with PTPN11 and SF3B1 occurring in one patient each. TP53 mutations were found in seven of nine patients who developed acute leukemia, and were documented to be present in the earliest sample (n=1) and acquired during lenalidomide treatment (n=6). By contrast, analysis of the microenvironment, and of hematopoietic stem and progenitor cells by flow cytometry was of limited prognostic value. Based on our data, we advocate conducting a prospective study aimed at investigating, in a larger number of cases of del(5q) myelodysplastic syndromes, whether the detection of such mutations before and after lenalidomide treatment can guide clinical decision-making.

Luis TC, Luc S, Mizukami T, Boukarabila H, Thongjuea S, Woll PS, Azzoni E, Giustacchini A, Lutteropp M, Bouriez-Jones T et al. 2016. Initial seeding of the embryonic thymus by immune-restricted lympho-myeloid progenitors. Nat Immunol, 17 (12), pp. 1424-1435. | Show Abstract | Read more

The final stages of restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly image and establish the functional and molecular properties of embryonic thymopoiesis-initiating progenitors (T-IPs) before their entry into the thymus and activation of Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T cell-restricted progenitors. Instead, single-cell molecular and functional analysis demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into lymphoid as well as myeloid components of the immune system. Moreover, studies of embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of T-IPs.

Dimitriou M, Woll PS, Mortera-Blanco T, Karimi M, Wedge DC, Doolittle H, Douagi I, Papaemmanuil E, Jacobsen SEW, Hellström-Lindberg E. 2016. Perturbed hematopoietic stem and progenitor cell hierarchy in myelodysplastic syndromes patients with monosomy 7 as the sole cytogenetic abnormality. Oncotarget, 7 (45), pp. 72685-72698. | Show Abstract | Read more

The stem and progenitor cell compartments in low- and intermediate-risk myelodysplastic syndromes (MDS) have recently been described, and shown to be highly conserved when compared to those in acute myeloid leukemia (AML). Much less is known about the characteristics of the hematopoietic hierarchy of subgroups of MDS with a high risk of transforming to AML. Immunophenotypic analysis of immature stem and progenitor cell compartments from patients with an isolated loss of the entire chromosome 7 (isolated -7), an independent high-risk genetic event in MDS, showed expansion and dominance of the malignant -7 clone in the granulocyte and macrophage progenitors (GMP), and other CD45RA+ progenitor compartments, and a significant reduction of the LIN-CD34+CD38low/-CD90+CD45RA- hematopoietic stem cell (HSC) compartment, highly reminiscent of what is typically seen in AML, and distinct from low-risk MDS. Established functional in vitro and in vivo stem cell assays showed a poor readout for -7 MDS patients irrespective of marrow blast counts. Moreover, while the -7 clone dominated at all stages of GM differentiation, the -7 clone had a competitive disadvantage in erythroid differentiation. In azacitidine-treated -7 MDS patients with a clinical response, the decreased clonal involvement in mononuclear bone marrow cells was not accompanied by a parallel reduced clonal involvement in the dominant CD45RA+ progenitor populations, suggesting a selective azacitidine-resistance of these distinct -7 progenitor compartments. Our data demonstrate, in a subgroup of high risk MDS with monosomy 7, that the perturbed stem and progenitor cell compartments resemble more that of AML than low-risk MDS.

Barrett NA, Malouf C, Kapeni C, Bacon WA, Giotopoulos G, Jacobsen SEW, Huntly BJ, Ottersbach K. 2016. Mll-AF4 Confers Enhanced Self-Renewal and Lymphoid Potential during a Restricted Window in Development. Cell Rep, 16 (4), pp. 1039-1054. | Show Abstract | Read more

MLL-AF4+ infant B cell acute lymphoblastic leukemia is characterized by an early onset and dismal survival. It initiates before birth, and very little is known about the early stages of the disease's development. Using a conditional Mll-AF4-expressing mouse model in which fusion expression is targeted to the earliest definitive hematopoietic cells generated in the mouse embryo, we demonstrate that Mll-AF4 imparts enhanced B lymphoid potential and increases repopulation and self-renewal capacity during a putative pre-leukemic state. This occurs between embryonic days 12 and 14 and manifests itself most strongly in the lymphoid-primed multipotent progenitor population, thus pointing to a window of opportunity and a potential cell of origin. However, this state alone is insufficient to generate disease, with the mice succumbing to B cell lymphomas only after a long latency. Future analysis of the molecular details of this pre-leukemic state will shed light on additional events required for progression to acute leukemia.

Zriwil A, Böiers C, Wittmann L, Green JCA, Woll PS, Jacobsen SEW, Sitnicka E. 2016. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice. Blood, 128 (2), pp. 217-226. | Show Abstract | Read more

Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R(+)CD19(+) ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R(+) myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R(+) myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported.

Drissen R, Buza-Vidas N, Woll P, Thongjuea S, Gambardella A, Giustacchini A, Mancini E, Zriwil A, Lutteropp M, Grover A et al. 2016. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat Immunol, 17 (6), pp. 666-676. | Show Abstract | Read more

According to current models of hematopoiesis, lymphoid-primed multi-potent progenitors (LMPPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)Flt3(hi)) and common myeloid progenitors (CMPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)CD41(hi)) establish an early branch point for separate lineage-commitment pathways from hematopoietic stem cells, with the notable exception that both pathways are proposed to generate all myeloid innate immune cell types through the same myeloid-restricted pre-granulocyte-macrophage progenitor (pre-GM) (Lin(-)Sca-1(-)c-Kit(+)CD41(-)FcγRII/III(-)CD150(-)CD105(-)). By single-cell transcriptome profiling of pre-GMs, we identified distinct myeloid differentiation pathways: a pathway expressing the gene encoding the transcription factor GATA-1 generated mast cells, eosinophils, megakaryocytes and erythroid cells, and a pathway lacking expression of that gene generated monocytes, neutrophils and lymphocytes. These results identify an early hematopoietic-lineage bifurcation that separates the myeloid lineages before their segregation from other hematopoietic-lineage potential.

Grover A, Sanjuan-Pla A, Thongjuea S, Carrelha J, Giustacchini A, Gambardella A, Macaulay I, Mancini E, Luis TC, Mead A et al. 2016. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat Commun, 7 pp. 11075. | Show Abstract | Read more

Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis.

Leid J, Carrelha J, Boukarabila H, Epelman S, Jacobsen SEW, Lavine KJ. 2016. Primitive Embryonic Macrophages are Required for Coronary Development and Maturation. Circ Res, 118 (10), pp. 1498-1511. | Show Abstract | Read more

RATIONALE: It is now recognized that macrophages residing within developing and adult tissues are derived from diverse progenitors including those of embryonic origin. Although the functions of macrophages in adult organisms are well studied, the functions of macrophages during organ development remain largely undefined. Moreover, it is unclear whether distinct macrophage lineages have differing functions. OBJECTIVE: To address these issues, we investigated the functions of macrophage subsets resident within the developing heart, an organ replete with embryonic-derived macrophages. METHODS AND RESULTS: Using a combination of flow cytometry, immunostaining, and genetic lineage tracing, we demonstrate that the developing heart contains a complex array of embryonic macrophage subsets that can be divided into chemokine (C-C motif) receptor 2(-) and chemokine (C-C motif) receptor 2(+) macrophages derived from primitive yolk sac, recombination activating gene 1(+) lymphomyeloid, and Fms-like tyrosine kinase 3(+) fetal monocyte lineages. Functionally, yolk sac-derived chemokine (C-C motif) receptor 2(-) macrophages are instrumental in coronary development where they are required for remodeling of the primitive coronary plexus. Mechanistically, chemokine (C-C motif) receptor 2(-) macrophages are recruited to coronary blood vessels at the onset of coronary perfusion where they mediate coronary plexus remodeling through selective expansion of perfused vasculature. We further demonstrate that insulin like growth factor signaling may mediate the proangiogenic properties of embryonic-derived macrophages. CONCLUSIONS: Together, these findings demonstrate that the embryonic heart contains distinct lineages of embryonic macrophages with unique functions and reveal a novel mechanism that governs coronary development.

Buono M, Facchini R, Matsuoka S, Thongjuea S, Waithe D, Luis TC, Giustacchini A, Besmer P, Mead AJ, Jacobsen SEW, Nerlov C. 2016. A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors. Nat Cell Biol, 18 (2), pp. 157-167. | Show Abstract | Read more

Thymic T cell development is initiated from bone-marrow-derived multi potent thymus-seeding progenitors. During the early stages of thymocyte differentiation, progenitors become T cell restricted. However, the cellular environments supporting these critical initial stages of T cell development within the thymic cortex are not known. Here we use the dependence of early, c-Kit-expressing thymic progenitors on Kit ligand (KitL) to show that CD4(-)CD8(-)c-Kit(+)CD25(-) DN1-stage progenitors associate with, and depend on, the membrane-bound form of KitL (mKitL) provided by a cortex-specific KitL-expressing vascular endothelial cell (VEC) population. In contrast, the subsequent CD4(-)CD8(-)c-Kit(+)CD25(+) DN2-stage progenitors associate selectively with cortical thymic epithelial cells (cTECs) and depend on cTEC-presented mKitL. These results show that the dynamic process of early thymic progenitor differentiation is paralleled by migration-dependent change to the supporting niche, and identify VECs as a thymic niche cell, with mKitL as a critical ligand.

Watson AS, Riffelmacher T, Stranks A, Williams O, De Boer J, Cain K, MacFarlane M, McGouran J, Kessler B, Khandwala S et al. 2015. Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia. Cell Death Discov, 1 pp. 15008-15008. | Show Abstract | Read more

Decreased autophagy contributes to malignancies, however it is unclear how autophagy impacts on tumour growth. Acute myeloid leukemia (AML) is an ideal model to address this as (i) patient samples are easily accessible, (ii) the hematopoietic stem and progenitor population (HSPC) where transformation occurs is well characterized, and (iii) loss of the key autophagy gene Atg7 in hematopoietic stem and progenitor cells (HSPCs) leads to a lethal pre-leukemic phenotype in mice. Here we demonstrate that loss of Atg5 results in an identical HSPC phenotype as loss of Atg7, confirming a general role for autophagy in HSPC regulation. Compared to more committed/mature hematopoietic cells, healthy human and mouse HSCs displayed enhanced basal autophagic flux, limiting mitochondrial damage and reactive oxygen species in this long-lived population. Taken together, with our previous findings these data are compatible with autophagy limiting leukemic transformation. In line with this, autophagy gene losses are found within chromosomal regions that are commonly deleted in human AML. Moreover, human AML blasts showed reduced expression of autophagy genes, and displayed decreased autophagic flux with accumulation of unhealthy mitochondria indicating that deficient autophagy may be beneficial to human AML. Crucially, heterozygous loss of autophagy in an MLL-ENL model of AML led to increased proliferation in vitro, a glycolytic shift, and more aggressive leukemias in vivo. With autophagy gene losses also identified in multiple other malignancies, these findings point to low autophagy providing a general advantage for tumour growth.

Noseda M, Harada M, McSweeney S, Leja T, Belian E, Stuckey DJ, Abreu Paiva MS, Habib J, Macaulay I, de Smith AJ et al. 2015. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium. Nat Commun, 6 pp. 6930. | Show Abstract | Read more

Cardiac progenitor/stem cells in adult hearts represent an attractive therapeutic target for heart regeneration, though (inter)-relationships among reported cells remain obscure. Using single-cell qRT-PCR and clonal analyses, here we define four subpopulations of cardiac progenitor/stem cells in adult mouse myocardium all sharing stem cell antigen-1 (Sca1), based on side population (SP) phenotype, PECAM-1 (CD31) and platelet-derived growth factor receptor-α (PDGFRα) expression. SP status predicts clonogenicity and cardiogenic gene expression (Gata4/6, Hand2 and Tbx5/20), properties segregating more specifically to PDGFRα(+) cells. Clonal progeny of single Sca1(+) SP cells show cardiomyocyte, endothelial and smooth muscle lineage potential after cardiac grafting, augmenting cardiac function although durable engraftment is rare. PDGFRα(-) cells are characterized by Kdr/Flk1, Cdh5, CD31 and lack of clonogenicity. PDGFRα(+)/CD31(-) cells derive from cells formerly expressing Mesp1, Nkx2-5, Isl1, Gata5 and Wt1, distinct from PDGFRα(-)/CD31(+) cells (Gata5 low; Flk1 and Tie2 high). Thus, PDGFRα demarcates the clonogenic cardiogenic Sca1(+) stem/progenitor cell.

Bardini M, Woll P, Corral C, Luc S, Wittmann L, Ma Z, LoNigro L, Basso G, Biondi A, Cazzaniga G, Jacobsen SE. 2015. Clonal Variegation and Dynamic Competition of Leukemia-Initiating Cells in Infant Acute Lymphoblastic Leukemia with MLL Rearrangement ANNALS OF HEMATOLOGY, 94 pp. S74-S74.

Bardini M, Woll PS, Corral L, Luc S, Wittmann L, Ma Z, Lo Nigro L, Basso G, Biondi A, Cazzaniga G, Jacobsen SEW. 2015. Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement Leukemia, 29 (1), pp. 38-50. | Show Abstract | Read more

© 2015 Macmillan Publishers Limited. Distinct from other forms of acute lymphoblastic leukemia (ALL), infant ALL with mixed lineage leukemia (MLL) gene rearrangement, the most common leukemia occurring within the first year of life, might arise without the need for cooperating genetic lesions. Through Ig/TCR rearrangement analysis of MLL-AF4+ infant ALL at diagnosis and xenograft leukemias from mice transplanted with the same diagnostic samples, we established that MLL-AF4+ infant ALL is composed of a branching subclonal architecture already at diagnosis, frequently driven by an Ig/TCR-rearranged founder clone. Some MLL-AF4+ clones appear to be largely quiescent at diagnosis but can reactivate and dominate when serially transplanted into immunodeficient mice, whereas other dominant clones at diagnosis can become more quiescent, suggesting a dynamic competition between actively proliferating and quiescent subclones. Investigation of paired diagnostic and relapse samples suggested that relapses often occur from subclones already present but more quiescent at diagnosis. Copy-number alterations identified at relapse might contribute to the activation and expansion of previously quiescent subclones. Finally, each of the identified subclones is able to contribute to the diverse phenotypic pool of MLL-AF4+ leukemia-propagating cells. Unraveling of the subclonal architecture and dynamics in MLL+ infant ALL may provide possible explanations for the therapy resistance and frequent relapses observed in this group of poor prognosis ALL.

Ramos MIP, Karpus ON, Broekstra P, Aarrass S, Jacobsen SE, Tak PP, Lebre MC. 2015. Absence of Fms-like tyrosine kinase 3 ligand (Flt3L) signalling protects against collagen-induced arthritis Annals of the Rheumatic Diseases, 74 (1), pp. 211-219. | Show Abstract | Read more

Objective: Comprehending the mechanisms that regulate activation of autoreactive T cells and B cell antibody production is fundamental for understanding the breakdown in self-tolerance and development of autoimmunity. Here we studied the role of Fms-like tyrosine kinase 3 ligand (Flt3L) signalling in the pathogenesis of collagen-induced arthritis (CIA). Methods: CIA was induced in mice lacking Flt3L (Flt3L -/- ) and wild-type (WT) littermates (C57/BL6, 8-10 weeks old). Mice were killed in the initial phase (acute phase: experiment 1) and late phase (chronic phase: experiment 2) of the disease. Arthritis severity was assessed using a semiquantitative scoring system (0-4), and histological analysis of cellular infiltration, cartilage destruction and peptidoglycan loss was performed. Phenotypic and functional analysis of T and B cells, FoxP3 expression, activation and lymphocyte costimulatory markers, and cytokine production were performed ex vivo by flow cytometry in lymph nodes. Serum collagen type II (CII)-specific antibodies were measured by ELISA. Results: Flt3L -/- mice showed a marked decrease in clinical arthritis scores and incidence of arthritis in both acute and chronic phases of CIA compared with WT mice. Moreover, decreased synovial inflammation and joint destruction was observed. Both the magnitude and quality of T cell responses were altered in Flt3L -/- . In the acute phase, the amount of CII-specific IgG2a antibodies was lower in Flt3L -/- than WT mice. Conclusions: These results strongly suggest a role for Flt3L signalling in the development of arthritis.

Svensson T, Chowdhury O, Garelius H, Lorenz F, Saft L, Jacobsen SE, Hellström-Lindberg E, Cherif H. 2014. A pilot phase I dose finding safety study of the thrombopoietin-receptor agonist, eltrombopag, in patients with myelodysplastic syndrome treated with azacitidine European Journal of Haematology, 93 (5), pp. 439-445. | Show Abstract | Read more

© 2014 John Wiley & Sons A/S. Objectives: Thrombocytopenia is an independent adverse prognostic factor in patients with Myelodysplastic syndromes (MDS). Azacitidine, first-line treatment for the majority of patients with higher-risk MDS, is associated with aggravated thrombocytopenia during the first cycles. Eltrombopag is a novel thrombopoietin receptor agonist, which also has been shown to inhibit proliferation of leukaemia cell lines in vitro. This phase I clinical trial was designed to explore the safety and tolerability of combining eltrombopag with azacitidine in patients with MDS. In addition, we assessed the potential effects of eltrombopag on hematopoietic stem and progenitor cells (HSPCs) from included patients. Patients and methods: Previously untreated patients with MDS eligible for treatment with azacitidine and with a platelet count < 75 × 10 9 /L were included. Patients received eltrombopag in dose escalation cohorts during three cycles of azacitidine. Results: Twelve patients, with a median age of 74 yr, were included. Severe adverse events included infectious complications, deep vein thrombosis and transient ischaemic attack. The maximal tolerated eltrombopag dose was 200 mg qd. Complete remission or bone marrow remission was achieved in 4 of 12 patients. Platelet counts improved or remained stable in 9 of 12 patients despite azacitidine treatment. No increase in blast count, disease progression, or bone marrow fibrosis related to study medication was reported. Eltrombopag did not induce cycling of HSPCs. Conclusion: The combination of eltrombopag with azacitidine in high-risk MDS patients is feasible and well tolerated. Improvements in platelet counts and the potential antileukaemic effect of eltrombopag should be explored in a randomised study.

Cited:

93

Scopus

Woll PS, Kjällquist U, Chowdhury O, Doolittle H, Wedge DC, Thongjuea S, Erlandsson R, Ngara M, Anderson K, Deng Q et al. 2014. Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo Cancer Cell, 25 (6), pp. 794-808. | Show Abstract | Read more

Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which differentcancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function invivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs invivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation. © 2014 Elsevier Inc.

Woll PS, Kjällquist U, Chowdhury O, Doolittle H, Wedge DC, Thongjuea S, Erlandsson R, Ngara M, Anderson K, Deng Q et al. 2014. Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. Cancer Cell, 25 (6), pp. 794-808. | Show Abstract | Read more

Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which different cancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function in vivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs in vivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation.

Bardini M, Woll PS, Corral L, Luc S, Wittmann L, Ma Z, Lo Nigro L, Basso G, Biondi A, Cazzaniga G, Jacobsen SEW. 2015. Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement. Leukemia, 29 (1), pp. 38-50. | Show Abstract | Read more

Distinct from other forms of acute lymphoblastic leukemia (ALL), infant ALL with mixed lineage leukemia (MLL) gene rearrangement, the most common leukemia occurring within the first year of life, might arise without the need for cooperating genetic lesions. Through Ig/TCR rearrangement analysis of MLL-AF4+ infant ALL at diagnosis and xenograft leukemias from mice transplanted with the same diagnostic samples, we established that MLL-AF4+ infant ALL is composed of a branching subclonal architecture already at diagnosis, frequently driven by an Ig/TCR-rearranged founder clone. Some MLL-AF4+ clones appear to be largely quiescent at diagnosis but can reactivate and dominate when serially transplanted into immunodeficient mice, whereas other dominant clones at diagnosis can become more quiescent, suggesting a dynamic competition between actively proliferating and quiescent subclones. Investigation of paired diagnostic and relapse samples suggested that relapses often occur from subclones already present but more quiescent at diagnosis. Copy-number alterations identified at relapse might contribute to the activation and expansion of previously quiescent subclones. Finally, each of the identified subclones is able to contribute to the diverse phenotypic pool of MLL-AF4+ leukemia-propagating cells. Unraveling of the subclonal architecture and dynamics in MLL+ infant ALL may provide possible explanations for the therapy resistance and frequent relapses observed in this group of poor prognosis ALL.

Anderson K, Dybedal I, Bigalke I, Schendel D, Chowdhury O, Woll P, Jacobsen S, Kvalheim G. 2014. THIRD GENERATION AUTOLOGOUS MYELOID-DERIVED DENDRITIC CELLS DEVELOPED FROM PATIENTS WITH CMML AND MDS DEMONSTRATE PHENOTYPIC PROPERTIES OF MATURE FUNCTIONAL DENDRITIC CELLS CYTOTHERAPY, 16 (4), pp. S24-S25.

Grover A, Mancini E, Moore S, Mead AJ, Atkinson D, Rasmussen KD, O'Carroll D, Jacobsen SEW, Nerlov C. 2014. Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate. J Exp Med, 211 (2), pp. 181-188. | Show Abstract | Read more

The erythroid stress cytokine erythropoietin (Epo) supports the development of committed erythroid progenitors, but its ability to act on upstream, multipotent cells remains to be established. We observe that high systemic levels of Epo reprogram the transcriptomes of multi- and bipotent hematopoietic stem/progenitor cells in vivo. This induces erythroid lineage bias at all lineage bifurcations known to exist between hematopoietic stem cells (HSCs) and committed erythroid progenitors, leading to increased erythroid and decreased myeloid HSC output. Epo, therefore, has a lineage instructive role in vivo, through suppression of non-erythroid fate options, demonstrating the ability of a cytokine to systematically bias successive lineage choices in favor of the generation of a specific cell type.

Svensson T, Chowdhury O, Garelius H, Lorenz F, Saft L, Jacobsen S-E, Hellström-Lindberg E, Cherif H. 2014. A pilot phase I dose finding safety study of the thrombopoietin-receptor agonist, eltrombopag, in patients with myelodysplastic syndrome treated with azacitidine. Eur J Haematol, 93 (5), pp. 439-445. | Show Abstract | Read more

OBJECTIVES: Thrombocytopenia is an independent adverse prognostic factor in patients with Myelodysplastic syndromes (MDS). Azacitidine, first-line treatment for the majority of patients with higher-risk MDS, is associated with aggravated thrombocytopenia during the first cycles. Eltrombopag is a novel thrombopoietin receptor agonist, which also has been shown to inhibit proliferation of leukaemia cell lines in vitro. This phase I clinical trial was designed to explore the safety and tolerability of combining eltrombopag with azacitidine in patients with MDS. In addition, we assessed the potential effects of eltrombopag on hematopoietic stem and progenitor cells (HSPCs) from included patients. PATIENTS AND METHODS: Previously untreated patients with MDS eligible for treatment with azacitidine and with a platelet count <75 × 10(9) /L were included. Patients received eltrombopag in dose escalation cohorts during three cycles of azacitidine. RESULTS: Twelve patients, with a median age of 74 yr, were included. Severe adverse events included infectious complications, deep vein thrombosis and transient ischaemic attack. The maximal tolerated eltrombopag dose was 200 mg qd. Complete remission or bone marrow remission was achieved in 4 of 12 patients. Platelet counts improved or remained stable in 9 of 12 patients despite azacitidine treatment. No increase in blast count, disease progression, or bone marrow fibrosis related to study medication was reported. Eltrombopag did not induce cycling of HSPCs. CONCLUSION: The combination of eltrombopag with azacitidine in high-risk MDS patients is feasible and well tolerated. Improvements in platelet counts and the potential antileukaemic effect of eltrombopag should be explored in a randomised study.

Tarnawski L, Macaulay I, Jacobsen SEW, Wu SM, Jovinge S. 2013. Single Cell Profiling Enables Surface Marker Discovery in Cardiac Progenitor Cells CIRCULATION, 128 (22),

Cited:

43

Scopus

Böiers C, Carrelha J, Lutteropp M, Luc S, Green JCA, Azzoni E, Woll PS, Mead AJ, Hultquist A, Swiers G et al. 2013. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell stem cell, 13 (5), pp. 535-548. | Show Abstract

In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis. Copyright © 2013 Elsevier Inc. All rights reserved.

Ramos MIP, Karpus ON, Broekstra P, Aarrass S, Jacobsen SE, Tak PP, Lebre MC. 2015. Absence of Fms-like tyrosine kinase 3 ligand (Flt3L) signalling protects against collagen-induced arthritis. Ann Rheum Dis, 74 (1), pp. 211-219. | Show Abstract | Read more

OBJECTIVE: Comprehending the mechanisms that regulate activation of autoreactive T cells and B cell antibody production is fundamental for understanding the breakdown in self-tolerance and development of autoimmunity. Here we studied the role of Fms-like tyrosine kinase 3 ligand (Flt3L) signalling in the pathogenesis of collagen-induced arthritis (CIA). METHODS: CIA was induced in mice lacking Flt3L (Flt3L(-/-)) and wild-type (WT) littermates (C57/BL6, 8-10 weeks old). Mice were killed in the initial phase (acute phase: experiment 1) and late phase (chronic phase: experiment 2) of the disease. Arthritis severity was assessed using a semiquantitative scoring system (0-4), and histological analysis of cellular infiltration, cartilage destruction and peptidoglycan loss was performed. Phenotypic and functional analysis of T and B cells, FoxP3 expression, activation and lymphocyte costimulatory markers, and cytokine production were performed ex vivo by flow cytometry in lymph nodes. Serum collagen type II (CII)-specific antibodies were measured by ELISA. RESULTS: Flt3L(-/-) mice showed a marked decrease in clinical arthritis scores and incidence of arthritis in both acute and chronic phases of CIA compared with WT mice. Moreover, decreased synovial inflammation and joint destruction was observed. Both the magnitude and quality of T cell responses were altered in Flt3L(-/-). In the acute phase, the amount of CII-specific IgG2a antibodies was lower in Flt3L(-/-) than WT mice. CONCLUSIONS: These results strongly suggest a role for Flt3L signalling in the development of arthritis.

Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A, Moore S, Carella C, Matsuoka S, Bouriez Jones T et al. 2013. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature, 502 (7470), pp. 232-236. | Show Abstract | Read more

The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding--a common and life-threatening side effect of many cancer therapies--and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output.

Ramos MI, Aarrass S, Jacobsen S, Tak PP, Lebre MC. 2013. FLT3L-DEPENDENT CD103+DC ARE CRUCIAL FOR THE INITIATION AND MAINTENANCE OF COLLAGEN-INDUCED ARTHRITIS ANNALS OF THE RHEUMATIC DISEASES, 72 pp. 192-192.

Mead AJ, Constantinescu SN, Jacobsen SE. 2013. Germline counterparts of oncogenic mutations: who gives a JAK?. Oncotarget, 4 (6), pp. 814-815. | Read more

Banerjee A, Northrup D, Boukarabila H, Jacobsen SEW, Allman D. 2013. Transcriptional repression of Gata3 is essential for early B cell commitment. Immunity, 38 (5), pp. 930-942. | Show Abstract | Read more

The mechanisms underlying the silencing of alternative fate potentials in very early B cell precursors remain unclear. Using gain- and loss-of-function approaches together with a synthetic Zinc-finger polypeptide (6ZFP) engineered to prevent transcription factor binding to a defined cis element, we show that the transcription factor EBF1 promotes B cell lineage commitment by directly repressing expression of the T-cell-lineage-requisite Gata3 gene. Ebf1-deficient lymphoid progenitors exhibited increased T cell lineage potential and elevated Gata3 transcript expression, whereas enforced EBF1 expression inhibited T cell differentiation and caused rapid loss of Gata3 mRNA. Notably, 6ZFP-mediated perturbation of EBF1 binding to a Gata3 regulatory region restored Gata3 expression, abrogated EBF1-driven suppression of T cell differentiation, and prevented B cell differentiation via a GATA3-dependent mechanism. Furthermore, EBF1 binding to Gata3 regulatory sites induced repressive histone modifications across this region. These data identify a transcriptional circuit critical for B cell lineage commitment.

Mead AJ, Kharazi S, Atkinson D, Macaulay I, Pecquet C, Loughran S, Lutteropp M, Woll P, Chowdhury O, Luc S et al. 2013. FLT3-ITDs instruct a myeloid differentiation and transformation bias in lymphomyeloid multipotent progenitors. Cell Rep, 3 (6), pp. 1766-1776. | Show Abstract | Read more

Whether signals mediated via growth factor receptors (GFRs) might influence lineage fate in multipotent progenitors (MPPs) is unclear. We explored this issue in a mouse knockin model of gain-of-function Flt3-ITD mutation because FLT3-ITDs are paradoxically restricted to acute myeloid leukemia even though Flt3 primarily promotes lymphoid development during normal hematopoiesis. When expressed in MPPs, Flt3-ITD collaborated with Runx1 mutation to induce high-penetrance aggressive leukemias that were exclusively of the myeloid phenotype. Flt3-ITDs preferentially expanded MPPs with reduced lymphoid and increased myeloid transcriptional priming while compromising early B and T lymphopoiesis. Flt3-ITD-induced myeloid lineage bias involved upregulation of the transcription factor Pu.1, which is a direct target gene of Stat3, an aberrantly activated target of Flt3-ITDs, further establishing how lineage bias can be inflicted on MPPs through aberrant GFR signaling. Collectively, these findings provide new insights into how oncogenic mutations might subvert the normal process of lineage commitment and dictate the phenotype of resulting malignancies.

Mead AJ, Chowdhury O, Pecquet C, Dusa A, Woll P, Atkinson D, Burns A, Score J, Rugless M, Clifford R et al. 2013. Impact of isolated germline JAK2V617I mutation on human hematopoiesis. Blood, 121 (20), pp. 4156-4165. | Show Abstract | Read more

The association between somatic JAK2 mutation and myeloproliferative neoplasms (MPNs) is now well established. However, because JAK2 mutations are associated with heterogeneous clinical phenotypes and often occur as secondary genetic events, some aspects of JAK2 mutation biology remain to be understood. We recently described a germline JAK2V617I mutation in a family with hereditary thrombocytosis and herein characterize the hematopoietic and signaling impact of JAK2V617I. Through targeted sequencing of MPN-associated mutations, exome sequencing, and clonality analysis, we demonstrate that JAK2V617I is likely to be the sole driver mutation in JAK2V617I-positive individuals with thrombocytosis. Phenotypic hematopoietic stem cells (HSCs) were increased in the blood and bone marrow of JAK2V617I-positive individuals and were sustained at higher levels than controls after xenotransplantation. In signaling and transcriptional assays, JAK2V617I demonstrated more activity than wild-type JAK2 but substantially less than JAK2V617F. After cytokine stimulation, JAK2V617I resulted in markedly increased downstream signaling compared with wild-type JAK2 and comparable with JAK2V617F. These findings demonstrate that JAK2V617I induces sufficient cytokine hyperresponsiveness in the absence of other molecular events to induce a homogeneous MPN-like phenotype. We also provide evidence that the JAK2V617I mutation may expand the HSC pool, providing insights into both JAK2 mutation biology and MPN disease pathogenesis.

Moignard V, Macaulay IC, Swiers G, Buettner F, Schütte J, Calero-Nieto FJ, Kinston S, Joshi A, Hannah R, Theis FJ et al. 2013. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol, 15 (4), pp. 363-372. | Show Abstract | Read more

Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease.

Davies C, Yip BH, Fernandez-Mercado M, Woll PS, Agirre X, Prosper F, Jacobsen SE, Wainscoat JS, Pellagatti A, Boultwood J. 2013. Silencing of ASXL1 impairs the granulomonocytic lineage potential of human CD34⁺ progenitor cells. Br J Haematol, 160 (6), pp. 842-850. | Show Abstract | Read more

The ASXL1 gene encodes a chromatin-binding protein involved in epigenetic regulation in haematopoietic cells. Loss-of-function ASXL1 mutations occur in patients with a range of myeloid malignancies and are associated with adverse outcome. We have used lentiviral-based shRNA technology to investigate the effects of ASXL1 silencing on cell proliferation, apoptosis, myeloid differentiation and global gene expression in human CD34(+) cells differentiated along the myeloid lineage in vitro. ASXL1-deficient cells showed a significant decrease in the generation of CD11b(+) and CD15(+) cells, implicating impaired granulomonocytic differentiation. Furthermore, colony-forming assays showed a significant increase in the number of multipotent mixed lineage colony-forming unit (CFU-GEMM) colonies and a significant decrease in the numbers of granulocyte-macrophage CFU (CFU-GM) and granulocyte CFU (CFU-G) colonies in ASXL1-deficient cells. Our data suggests that ASXL1 knockdown perturbs human granulomonocytic differentiation. Gene expression profiling identified many deregulated genes in the ASXL1-deficient cells differentiated along the granulomonocytic lineage, and pathway analysis showed that the most significantly deregulated pathway was the LXR/RXR activation pathway. ASXL1 may play a key role in recruiting the polycomb repressor complex 2 (PRC2) to specific loci, and we found over-representation of PRC2 targets among the deregulated genes in ASXL1-deficient cells. These findings shed light on the functional role of ASXL1 in human myeloid differentiation.

Böiers C, Carrelha J, Lutteropp M, Luc S, Green JCA, Azzoni E, Woll PS, Mead AJ, Hultquist A, Swiers G et al. 2013. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell, 13 (5), pp. 535-548. | Show Abstract | Read more

In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis.

Davies C, Yip BH, Fernandez-Mercado M, Woll PS, Agirre X, Prosper F, Jacobsen SE, Wainscoat JS, Pellagatti A, Boultwood J. 2013. Silencing of ASXL1 impairs the granulomonocytic lineage potential of human CD34+ progenitor cells British Journal of Haematology, 160 (6), pp. 842-850. | Show Abstract | Read more

The ASXL1 gene encodes a chromatin-binding protein involved in epigenetic regulation in haematopoietic cells. Loss-of-function ASXL1 mutations occur in patients with a range of myeloid malignancies and are associated with adverse outcome. We have used lentiviral-based shRNA technology to investigate the effects of ASXL1 silencing on cell prolif eration, apoptosis, myeloid differentiation and global gene expression in human CD34 + cells differentiated along the myeloid lineage in vitro. ASXL1-deficient cells showed a significant decrease in the generation of CD11b + and CD15 + cells, implicating impaired granulomonocytic differentiation. Furthermore, colony-forming assays showed a significant increase in the number of multipotent mixed lineage colony-forming unit (CFU-GEMM) colonies and a significant decrease in the numbers of granulocyte-macrophage CFU (CFU-GM) and granulocyte CFU (CFU-G) colonies in ASXL1-deficient cells. Our data suggests that ASXL1 knockdown perturbs human granulomonocytic differentiation. Gene expression profiling identified many deregulated genes in the ASXL1-deficient cells differentiated along the granulomonocytic lineage, and pathway analysis showed that the most significantly deregulated pathway was the LXR/RXR activation pathway. ASXL1 may play a key role in recruiting the polycomb repressor complex 2 (PRC2) to specific loci, and we found over-representation of PRC2 targets among the deregulated genes in ASXL1-deficient cells. These findings shed light on the functional role of ASXL1 in human myeloid differentiation. © 2013 Blackwell Publishing Ltd.

Cited:

124

Scopus

Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A, Moore S, Carella C, Matsuoka S, Jones TB et al. 2013. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy Nature, 502 (7470), pp. 232-236. | Show Abstract | Read more

The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding - a common and life-threatening side effect of many cancer therapies - and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output. © 2013 Macmillan Publishers Limited. All rights reserved.

Lutz C, Woll PS, Hall G, Castor A, Dreau H, Cazzaniga G, Zuna J, Jensen C, Clark SA, Biondi A et al. 2013. Quiescent leukaemic cells account for minimal residual disease in childhood lymphoblastic leukaemia. Leukemia, 27 (5), pp. 1204-1207. | Read more

Roy A, Cowan G, Mead AJ, Filippi S, Bohn G, Chaidos A, Tunstall O, Chan JKY, Choolani M, Bennett P et al. 2012. Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21. Proc Natl Acad Sci U S A, 109 (43), pp. 17579-17584. | Show Abstract | Read more

The 40-fold increase in childhood megakaryocyte-erythroid and B-cell leukemia in Down syndrome implicates trisomy 21 (T21) in perturbing fetal hematopoiesis. Here, we show that compared with primary disomic controls, primary T21 fetal liver (FL) hematopoietic stem cells (HSC) and megakaryocyte-erythroid progenitors are markedly increased, whereas granulocyte-macrophage progenitors are reduced. Commensurately, HSC and megakaryocyte-erythroid progenitors show higher clonogenicity, with increased megakaryocyte, megakaryocyte-erythroid, and replatable blast colonies. Biased megakaryocyte-erythroid-primed gene expression was detected as early as the HSC compartment. In lymphopoiesis, T21 FL lymphoid-primed multipotential progenitors and early lymphoid progenitor numbers are maintained, but there was a 10-fold reduction in committed PreproB-lymphoid progenitors and the functional B-cell potential of HSC and early lymphoid progenitor is severely impaired, in tandem with reduced early lymphoid gene expression. The same pattern was seen in all T21 FL samples and no samples had GATA1 mutations. Therefore, T21 itself causes multiple distinct defects in FL myelo- and lymphopoiesis.

Buza-Vidas N, Cismasiu VB, Moore S, Mead AJ, Woll PS, Lutteropp M, Melchiori L, Luc S, Bouriez-Jones T, Atkinson D et al. 2012. Dicer is selectively important for the earliest stages of erythroid development. Blood, 120 (12), pp. 2412-2416. | Show Abstract | Read more

MicroRNAs (miRs) are involved in many aspects of normal and malignant hematopoiesis, including hematopoietic stem cell (HSC) self-renewal, proliferation, and terminal differentiation. However, a role for miRs in the generation of the earliest stages of lineage committed progenitors from HSCs has not been identified. Using Dicer inactivation, we show that the miR complex is not only essential for HSC maintenance but is specifically required for their erythroid programming and subsequent generation of committed erythroid progenitors. In bipotent pre-MegEs, loss of Dicer up-regulated transcription factors preferentially expressed in megakaryocyte progenitors (Gata2 and Zfpm1) and decreased expression of the erythroid-specific Klf1 transcription factor. These results show a specific requirement for Dicer in acquisition of erythroid lineage programming and potential in HSCs and their subsequent erythroid lineage differentiation, and in particular indicate a role for the miR complex in achieving proper balance of lineage-specific transcriptional regulators necessary for HSC multilineage potential to be maintained.

Ramos MI, Karpus O, Broekstra P, Aarrass S, Jacobsen SE, Tak PP, Lebre MC. 2012. MICE LACKING FLT3L ARE PROTECTED FROM COLLAGEN-INDUCED ARTHRITIS: REGULATING THE REGULATORS ANNALS OF THE RHEUMATIC DISEASES, 71 pp. 492-493.

Ahlenius H, Devaraju K, Monni E, Oki K, Wattananit S, Darsalia V, Iosif RE, Torper O, Wood JC, Braun S et al. 2012. Adaptor protein LNK is a negative regulator of brain neural stem cell proliferation after stroke. J Neurosci, 32 (15), pp. 5151-5164. | Show Abstract | Read more

Ischemic stroke causes transient increase of neural stem and progenitor cell (NSPC) proliferation in the subventricular zone (SVZ), and migration of newly formed neuroblasts toward the damaged area where they mature to striatal neurons. The molecular mechanisms regulating this plastic response, probably involved in structural reorganization and functional recovery, are poorly understood. The adaptor protein LNK suppresses hematopoietic stem cell self-renewal, but its presence and role in the brain are poorly understood. Here we demonstrate that LNK is expressed in NSPCs in the adult mouse and human SVZ. Lnk(-/-) mice exhibited increased NSPC proliferation after stroke, but not in intact brain or following status epilepticus. Deletion of Lnk caused increased NSPC proliferation while overexpression decreased mitotic activity of these cells in vitro. We found that Lnk expression after stroke increased in SVZ through the transcription factors STAT1/3. LNK attenuated insulin-like growth factor 1 signaling by inhibition of AKT phosphorylation, resulting in reduced NSPC proliferation. Our findings identify LNK as a stroke-specific, endogenous negative regulator of NSPC proliferation, and suggest that LNK signaling is a novel mechanism influencing plastic responses in postischemic brain.

Mansour A, Abou-Ezzi G, Sitnicka E, Jacobsen SEW, Wakkach A, Blin-Wakkach C. 2012. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow The Journal of Cell Biology, 196 (5), pp. i6-i6. | Read more

Mansour A, Abou-Ezzi G, Sitnicka E, Jacobsen SEW, Wakkach A, Blin-Wakkach C. 2012. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med, 209 (3), pp. 537-549. | Show Abstract | Read more

Formation of the hematopoietic stem cell (HSC) niche in bone marrow (BM) is tightly associated with endochondral ossification, but little is known about the mechanisms involved. We used the oc/oc mouse, a mouse model with impaired endochondral ossification caused by a loss of osteoclast (OCL) activity, to investigate the role of osteoblasts (OBLs) and OCLs in the HSC niche formation. The absence of OCL activity resulted in a defective HSC niche associated with an increased proportion of mesenchymal progenitors but reduced osteoblastic differentiation, leading to impaired HSC homing to the BM. Restoration of OCL activity reversed the defect in HSC niche formation. Our data demonstrate that OBLs are required for establishing HSC niches and that osteoblastic development is induced by OCLs. These findings broaden our knowledge of the HSC niche formation, which is critical for understanding normal and pathological hematopoiesis.

Tang Y, Peitzsch C, Charoudeh HN, Cheng M, Chaves P, Jacobsen SEW, Sitnicka E. 2012. Emergence of NK-cell progenitors and functionally competent NK-cell lineage subsets in the early mouse embryo. Blood, 120 (1), pp. 63-75. | Show Abstract | Read more

The earliest stages of natural killer (NK)-cell development are not well characterized. In this study, we investigated in different fetal hematopoietic tissues how NK-cell progenitors and their mature NK-cell progeny emerge and expand during fetal development. Here we demonstrate, for the first time, that the counterpart of adult BM Lin(-)CD122(+)NK1.1(-)DX5(-) NK-cell progenitor (NKP) emerges in the fetal liver at E13.5. After NKP expansion, immature NK cells emerge at E14.5 in the liver and E15.5 in the spleen. Thymic NK cells arise at E15.5, whereas functionally competent cytotoxic NK cells were present in the liver and spleen at E16.5 and E17.5, respectively. Fetal NKPs failed to produce B and myeloid cells but sustained combined NK- and T-lineage potential at the single-cell level. NKPs were also found in the fetal blood, spleen, and thymus. These findings show the emergence and expansion of bipotent NK/T-cell progenitor during fetal and adult lymphopoiesis, further supporting that NK/T-lineage restriction is taking place prethymically. Uncovering the earliest NK-cell developmental stages will provide important clues, helping to understand the origin of diverse NK-cell subsets, their progenitors, and key regulators.

Reckzeh K, Bereshchenko O, Mead A, Rehn M, Kharazi S, Jacobsen S-E, Nerlov C, Cammenga J. 2012. Molecular and cellular effects of oncogene cooperation in a genetically accurate AML mouse model LEUKEMIA, 26 (7), pp. 1527-1536. | Show Abstract | Read more

Biallelic CEBPA mutations and FMS-like tyrosine kinase receptor 3 (FLT3) length mutations are frequently identified in human acute myeloid leukemia (AML) with normal cytogenetics. However, the molecular and cellular mechanisms of oncogene cooperation remain unclear because of a lack of disease models. We have generated an AML mouse model using knockin mouse strains to study cooperation of an internal tandem duplication (ITD) mutation in the Flt3 gene with commonly observed CCAAT/enhancer binding protein alpha (C/EBPα) mutations. This study provides evidence that FLT3 ITD cooperates in leukemogenesis by enhancing the generation of leukemia-initiating granulocyte-monocyte progenitors (GMPs) otherwise prevented by a block in differentiation and skewed lineage priming induced by biallelic C/EBPα mutations. These cellular changes are accompanied by an upregulation of hematopoietic stem cell and STAT5 target genes. By gene expression analysis in premalignant populations, we further show a role of FLT3 ITD in activating genes involved in survival/transformation and chemoresistance. Both multipotent progenitors and GMP cells contain the potential to induce AML similar to corresponding cells in human AML samples showing that this model resembles human disease. © 2012 Macmillan Publishers Limited.

Cited:

841

Scopus

Schulz C, Perdiguero EG, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SEW, Pollard JW et al. 2012. A lineage of myeloid cells independent of myb and hematopoietic stem cells Science, 335 (6077), pp. 86-90. | Show Abstract | Read more

Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11b high monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80 bright macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia - cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.

Reckzeh K, Bereshchenko O, Mead A, Rehn M, Kharazi S, Jacobsen S-E, Nerlov C, Cammenga J. 2012. Molecular and cellular effects of oncogene cooperation in a genetically accurate AML mouse model. Leukemia, 26 (7), pp. 1527-1536. | Show Abstract | Read more

Biallelic CEBPA mutations and FMS-like tyrosine kinase receptor 3 (FLT3) length mutations are frequently identified in human acute myeloid leukemia (AML) with normal cytogenetics. However, the molecular and cellular mechanisms of oncogene cooperation remain unclear because of a lack of disease models. We have generated an AML mouse model using knockin mouse strains to study cooperation of an internal tandem duplication (ITD) mutation in the Flt3 gene with commonly observed CCAAT/enhancer binding protein alpha (C/EBPα) mutations. This study provides evidence that FLT3 ITD cooperates in leukemogenesis by enhancing the generation of leukemia-initiating granulocyte-monocyte progenitors (GMPs) otherwise prevented by a block in differentiation and skewed lineage priming induced by biallelic C/EBPα mutations. These cellular changes are accompanied by an upregulation of hematopoietic stem cell and STAT5 target genes. By gene expression analysis in premalignant populations, we further show a role of FLT3 ITD in activating genes involved in survival/transformation and chemoresistance. Both multipotent progenitors and GMP cells contain the potential to induce AML similar to corresponding cells in human AML samples showing that this model resembles human disease.

Cited:

38

Scopus

Mancini E, Sanjuan-Pla A, Luciani L, Moore S, Grover A, Zay A, Rasmussen KD, Luc S, Bilbao D, O'Carroll D et al. 2012. FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors EMBO Journal, 31 (2), pp. 351-365. | Show Abstract | Read more

The transcription factors that control lineage specification of haematopoietic stem cells (HSCs) have been well described for the myeloid and lymphoid lineages, whereas transcriptional control of erythroid (E) and megakaryocytic (Mk) fate is less understood. We here use conditional removal of the GATA-1 and FOG-1 transcription factors to identify FOG-1 as required for the formation of all committed Mk-and E-lineage progenitors, whereas GATA-1 was observed to be specifically required for E-lineage commitment. FOG-1-deficient HSCs and preMegEs, the latter normally bipotent for the Mk and E lineages, underwent myeloid transcriptional reprogramming, and formed myeloid, but not erythroid and megakaryocytic cells in vitro. These results identify FOG-1 and GATA-1 as required for formation of bipotent Mk/E progenitors and their E-lineage commitment, respectively, and show that FOG-1 mediates transcriptional Mk/E programming of HSCs as well as their subsequent Mk/E-lineage commitment. Finally, C/EBPs and FOG-1 exhibited transcriptional cross-regulation in early myelo-erythroid progenitors making their functional antagonism a potential mechanism for separation of the myeloid and Mk/E lineages. © 2012 European Molecular Biology Organization | All Rights Reserved.

Mead AJ, Rugless MJ, Jacobsen SEW, Schuh A. 2012. Germline JAK2 mutation in a family with hereditary thrombocytosis. N Engl J Med, 366 (10), pp. 967-969. | Read more

Luc S, Luis TC, Boukarabila H, Macaulay IC, Buza-Vidas N, Bouriez-Jones T, Lutteropp M, Woll PS, Loughran SJ, Mead AJ et al. 2012. The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat Immunol, 13 (4), pp. 412-419. | Show Abstract | Read more

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus.

Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SEW, Pollard JW et al. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science, 336 (6077), pp. 86-90. | Show Abstract | Read more

Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11b(high) monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80(bright) macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia--cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.

Mancini E, Sanjuan-Pla A, Luciani L, Moore S, Grover A, Zay A, Rasmussen KD, Luc S, Bilbao D, O'Carroll D et al. 2012. FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors. EMBO J, 31 (2), pp. 351-365. | Show Abstract | Read more

The transcription factors that control lineage specification of haematopoietic stem cells (HSCs) have been well described for the myeloid and lymphoid lineages, whereas transcriptional control of erythroid (E) and megakaryocytic (Mk) fate is less understood. We here use conditional removal of the GATA-1 and FOG-1 transcription factors to identify FOG-1 as required for the formation of all committed Mk- and E-lineage progenitors, whereas GATA-1 was observed to be specifically required for E-lineage commitment. FOG-1-deficient HSCs and preMegEs, the latter normally bipotent for the Mk and E lineages, underwent myeloid transcriptional reprogramming, and formed myeloid, but not erythroid and megakaryocytic cells in vitro. These results identify FOG-1 and GATA-1 as required for formation of bipotent Mk/E progenitors and their E-lineage commitment, respectively, and show that FOG-1 mediates transcriptional Mk/E programming of HSCs as well as their subsequent Mk/E-lineage commitment. Finally, C/EBPs and FOG-1 exhibited transcriptional cross-regulation in early myelo-erythroid progenitors making their functional antagonism a potential mechanism for separation of the myeloid and Mk/E lineages.

Vyas P, Jacobsen SEW. 2011. Clever leukemic stem cells branch out. Cell Stem Cell, 8 (3), pp. 242-244. | Show Abstract | Read more

Individual tumors harbor heterogeneous populations of genetically distinct subclones. Two recent papers in Nature by Notta et al. (2011) and Anderson et al. (2011) reveal genetic heterogeneity in functional leukemic stem cells, which has important implications for how both cancer and normal stem cell populations may adapt to selective pressure.

Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J, Knight S, Jacobsen S-EW et al. 2011. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med, 208 (3), pp. 455-467. | Show Abstract | Read more

The role of autophagy, a lysosomal degradation pathway which prevents cellular damage, in the maintenance of adult mouse hematopoietic stem cells (HSCs) remains unknown. Although normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs leads to leukemia. Therefore, mechanisms protecting HSCs from cellular damage are essential to prevent hematopoietic malignancies. In this study, we crippled autophagy in HSCs by conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system. This resulted in the loss of normal HSC functions, a severe myeloproliferation, and death of the mice within weeks. The hematopoietic stem and progenitor cell compartment displayed an accumulation of mitochondria and reactive oxygen species, as well as increased proliferation and DNA damage. HSCs within the Lin(-)Sca-1(+)c-Kit(+) (LSK) compartment were significantly reduced. Although the overall LSK compartment was expanded, Atg7-deficient LSK cells failed to reconstitute the hematopoietic system of lethally irradiated mice. Consistent with loss of HSC functions, the production of both lymphoid and myeloid progenitors was impaired in the absence of Atg7. Collectively, these data show that Atg7 is an essential regulator of adult HSC maintenance.

Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S, Woll P, Mead A, Alford KA, Rout R et al. 2011. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell, 19 (1), pp. 138-152. | Show Abstract | Read more

The relationships between normal and leukemic stem/progenitor cells are unclear. We show that in ∼80% of primary human CD34+ acute myeloid leukemia (AML), two expanded populations with hemopoietic progenitor immunophenotype coexist in most patients. Both populations have leukemic stem cell (LSC) activity and are hierarchically ordered; one LSC population gives rise to the other. Global gene expression profiling shows the LSC populations are molecularly distinct and resemble normal progenitors but not stem cells. The more mature LSC population most closely mirrors normal granulocyte-macrophage progenitors (GMP) and the immature LSC population a previously uncharacterized progenitor functionally similar to lymphoid-primed multipotential progenitors (LMPPs). This suggests that in most cases primary CD34+ AML is a progenitor disease where LSCs acquire abnormal self-renewal potential.

De Gobbi M, Garrick D, Lynch M, Vernimmen D, Hughes JR, Goardon N, Luc S, Lower KM, Sloane-Stanley JA, Pina C et al. 2011. Generation of bivalent chromatin domains during cell fate decisions. Epigenetics Chromatin, 4 (1), pp. 9. | Show Abstract | Read more

BACKGROUND: In self-renewing, pluripotent cells, bivalent chromatin modification is thought to silence (H3K27me3) lineage control genes while 'poising' (H3K4me3) them for subsequent activation during differentiation, implying an important role for epigenetic modification in directing cell fate decisions. However, rather than representing an equivalently balanced epigenetic mark, the patterns and levels of histone modifications at bivalent genes can vary widely and the criteria for identifying this chromatin signature are poorly defined. RESULTS: Here, we initially show how chromatin status alters during lineage commitment and differentiation at a single well characterised bivalent locus. In addition we have determined how chromatin modifications at this locus change with gene expression in both ensemble and single cell analyses. We also show, on a global scale, how mRNA expression may be reflected in the ratio of H3K4me3/H3K27me3. CONCLUSIONS: While truly 'poised' bivalently modified genes may exist, the original hypothesis that all bivalent genes are epigenetically premarked for subsequent expression might be oversimplistic. In fact, from the data presented in the present work, it is equally possible that many genes that appear to be bivalent in pluripotent and multipotent cells may simply be stochastically expressed at low levels in the process of multilineage priming. Although both situations could be considered to be forms of 'poising', the underlying mechanisms and the associated implications are clearly different.

Hills D, Gribi R, Ure J, Buza-Vidas N, Luc S, Jacobsen SEW, Medvinsky A. 2011. Hoxb4-YFP reporter mouse model: a novel tool for tracking HSC development and studying the role of Hoxb4 in hematopoiesis. Blood, 117 (13), pp. 3521-3528. | Show Abstract | Read more

Hoxb4 overexpression promotes dramatic expansion of bone marrow (BM) hematopoietic stem cells (HSCs) without leukemic transformation and induces development of definitive HSCs from early embryonic yolk sac and differentiating embryonic stem cells. Knockout studies of Hoxb4 showed little effect on hematopoiesis, but interpretation of these results is obscured by the lack of direct evidence that Hoxb4 is expressed in HSCs and possible compensatory effects of other (Hox) genes. To evaluate accurately the pattern of Hoxb4 expression and to gain a better understanding of the physiologic role of Hoxb4 in the hemato-poietic system, we generated a knock-in Hoxb4-yellow fluorescent protein (YFP) reporter mouse model. We show that BM Lin(-)Sca1(+)c-Kit(+) cells express Hoxb4-YFP and demonstrate functionally in the long-term repopulation assay that definitive HSCs express Hoxb4. Similarly, aorta-gonad-mesonephrous-derived CD45(+)CD144(+) cells, enriched for HSCs, express Hoxb4. Furthermore, yolk sac and placental HSC populations express Hoxb4. Unexpectedly, Hoxb4 expression in the fetal liver HSCs is lower than in the BM, reaching negligible levels in some HSCs, suggesting an insignificant role of Hoxb4 in expansion of fetal liver HSCs. Hoxb4 expression therefore would not appear to correlate with the cycling status of fetal liver HSCs, although highly proliferative HSCs from young BM show strong Hoxb4 expression.

Chau Y-Y, Brownstein D, Mjoseng H, Lee W-C, Buza-Vidas N, Nerlov C, Jacobsen SE, Perry P, Berry R, Thornburn A et al. 2011. Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1. PLoS Genet, 7 (12), pp. e1002404. | Show Abstract | Read more

There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal-epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1) suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2) highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in tissue turnover.

Kharazi S, Mead AJ, Mansour A, Hultquist A, Böiers C, Luc S, Buza-Vidas N, Ma Z, Ferry H, Atkinson D et al. 2011. Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on Flt3-ITD-induced myeloproliferation. Blood, 118 (13), pp. 3613-3621. | Show Abstract | Read more

Acquisition of homozygous activating growth factor receptor mutations might accelerate cancer progression through a simple gene-dosage effect. Internal tandem duplications (ITDs) of FLT3 occur in approximately 25% cases of acute myeloid leukemia and induce ligand-independent constitutive signaling. Homozygous FLT3-ITDs confer an adverse prognosis and are frequently detected at relapse. Using a mouse knockin model of Flt3-internal tandem duplication (Flt3-ITD)-induced myeloproliferation, we herein demonstrate that the enhanced myeloid phenotype and expansion of granulocyte-monocyte and primitive Lin(-)Sca1(+)c-Kit(+) progenitors in Flt3-ITD homozygous mice can in part be mediated through the loss of the second wild-type allele. Further, whereas autocrine FLT3 ligand production has been implicated in FLT3-ITD myeloid malignancies and resistance to FLT3 inhibitors, we demonstrate here that the mouse Flt3(ITD/ITD) myeloid phenotype is FLT3 ligand-independent.

Buza-Vidas N, Woll P, Hultquist A, Duarte S, Lutteropp M, Bouriez-Jones T, Ferry H, Luc S, Jacobsen SEW. 2011. FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells. Blood, 118 (6), pp. 1544-1548. | Show Abstract | Read more

Lymphoid-primed multipotent progenitors with down-regulated megakaryocyte-erythroid (MkE) potential are restricted to cells with high levels of cell-surface FLT3 expression, whereas HSCs and MkE progenitors lack detectable cell-surface FLT3. These findings are compatible with FLT3 cell-surface expression not being detectable in the fully multipotent stem/progenitor cell compartment in mice. If so, this process could be distinct from human hematopoiesis, in which FLT3 already is expressed in multipotent stem/progenitor cells. The expression pattern of Flt3 (mRNA) and FLT3 (protein) in multipotent progenitors is of considerable relevance for mouse models in which prognostically important Flt3 mutations are expressed under control of the endogenous mouse Flt3 promoter. Herein, we demonstrate that mouse Flt3 expression initiates in fully multipotent progenitors because in addition to lymphoid and granulocyte-monocyte progenitors, FLT3(-) Mk- and E-restricted downstream progenitors are also highly labeled when Flt3-Cre fate mapping is applied.

Buza-Vidas N, Duarte S, Luc S, Bouriez-Jones T, Woll PS, Jacobsen SEW. 2011. GATA3 is redundant for maintenance and self-renewal of hematopoietic stem cells. Blood, 118 (5), pp. 1291-1293. | Show Abstract | Read more

GATA3 has been identified as a master regulator of T helper cells, as well as being important for early thymic progenitors and T-cell commitment. However, Gata3 expression initiates already at the hematopoietic stem cell (HSC) level, implicating a potential role also in the regulation of HSCs. Herein we used a conditional Gata3 knockout strategy in which Gata3 expression was completely deleted from the earliest stage of embryonic hematopoietic development after emergence of HSCs from hemogenic endothelium. Through a detailed analysis of HSCs at the phenotypic and functional level, we demonstrate that steady-state levels of HSCs are normal in Gata3(fl/fl)Vav-Cre(tg/+) mice. Moreover, through long-term primary and secondary transplantation experiments, we also unequivocally demonstrate that Gata3 has a redundant role in post-transplantation HSC self-renewal.

Pronk CJH, Veiby OP, Bryder D, Jacobsen SEW. 2011. Tumor necrosis factor restricts hematopoietic stem cell activity in mice: involvement of two distinct receptors. J Exp Med, 208 (8), pp. 1563-1570. | Show Abstract | Read more

Whereas maintenance of hematopoietic stem cells (HSCs) is a requisite for life, uncontrolled expansion of HSCs might enhance the propensity for leukemic transformation. Accordingly, HSC numbers are tightly regulated. The identification of physical cellular HSC niches has underscored the importance of extrinsic regulators of HSC homeostasis. However, whereas extrinsic positive regulators of HSCs have been identified, opposing extrinsic repressors of HSC expansion in vivo have yet to be described. Like many other acute and chronic inflammatory diseases, bone marrow (BM) failure syndromes are associated with tumor necrosis factor-α (TNF) overexpression. However, the in vivo relevance of TNF in the regulation of HSCs has remained unclear. Of considerable relevance for normal hematopoiesis and in particular BM failure syndromes, we herein demonstrate that TNF is a cell-extrinsic and potent endogenous suppressor of normal HSC activity in vivo in mice. These effects of TNF involve two distinct TNF receptors.

Tehranchi R, Woll PS, Anderson K, Buza-Vidas N, Mizukami T, Mead AJ, Astrand-Grundström I, Strömbeck B, Horvat A, Ferry H et al. 2010. Persistent malignant stem cells in del(5q) myelodysplasia in remission. N Engl J Med, 363 (11), pp. 1025-1037. | Show Abstract | Read more

BACKGROUND: The in vivo clinical significance of malignant stem cells remains unclear. METHODS: Patients who have the 5q deletion (del[5q]) myelodysplastic syndrome (interstitial deletions involving the long arm of chromosome 5) have complete clinical and cytogenetic remissions in response to lenalidomide treatment, but they often have relapse. To determine whether the persistence of rare but distinct malignant stem cells accounts for such relapses, we examined bone marrow specimens obtained from seven patients with the del(5q) myelodysplastic syndrome who became transfusion-independent while receiving lenalidomide treatment and entered cytogenetic remission. RESULTS: Virtually all CD34+, CD38+ progenitor cells and stem cells that were positive for CD34 and CD90, with undetectable or low CD38 (CD38−/low), had the 5q deletion before treatment. Although lenalidomide efficiently reduced these progenitors in patients in complete remission, a larger fraction of the minor, quiescent, CD34+,CD38-/low, CD90+ del(5q) stem cells as well as functionally defined del(5q) stem cells remained distinctly resistant to lenalidomide. Over time, lenalidomide resistance developed in most of the patients in partial and complete remission, with recurrence or expansion of the del(5q) clone and clinical and cytogenetic progression. CONCLUSIONS: In these patients with the del(5q) myelodysplastic syndrome, we identified rare and phenotypically distinct del(5q) myelodysplastic syndrome stem cells that were also selectively resistant to therapeutic targeting at the time of complete clinical and cytogenetic remission. (Funded by the EuroCancerStemCell Consortium and others.)

Grövdal M, Karimi M, Khan R, Aggerholm A, Antunovic P, Astermark J, Bernell P, Engström L-M, Kjeldsen L, Linder O et al. 2010. Maintenance treatment with azacytidine for patients with high-risk myelodysplastic syndromes (MDS) or acute myeloid leukaemia following MDS in complete remission after induction chemotherapy. Br J Haematol, 150 (3), pp. 293-302. | Show Abstract | Read more

This prospective Phase II study is the first to assess the feasibility and efficacy of maintenance 5-azacytidine for older patients with high-risk myelodysplastic syndrome (MDS), chronic myelomonocytic leukaemia and MDS-acute myeloid leukaemia syndromes in complete remission (CR) after induction chemotherapy. Sixty patients were enrolled and treated by standard induction chemotherapy. Patients that reached CR started maintenance therapy with subcutaneous azacytidine, 5/28 d until relapse. Promoter-methylation status of CDKN2B (P15 ink4b), CDH1 and HIC1 was examined pre-induction, in CR and 6, 12 and 24 months post CR. Twenty-four (40%) patients achieved CR after induction chemotherapy and 23 started maintenance treatment with azacytidine. Median CR duration was 13.5 months, >24 months in 17% of the patients, and 18-30.5 months in the four patients with trisomy 8. CR duration was not associated with CDKN2B methylation status or karyotype. Median overall survival was 20 months. Hypermethylation of CDH1 was significantly associated with low CR rate, early relapse, and short overall survival (P = 0.003). 5-azacytidine treatment, at a dose of 60 mg/m(2) was well tolerated. Grade III-IV thrombocytopenia and neutropenia occurred after 9.5 and 30% of the cycles, respectively, while haemoglobin levels increased during treatment. 5-azacytidine treatment is safe, feasible and may be of benefit in a subset of patients.

Nozad Charoudeh H, Tang Y, Cheng M, Cilio CM, Jacobsen SEW, Sitnicka E. 2010. Identification of an NK/T cell-restricted progenitor in adult bone marrow contributing to bone marrow- and thymic-dependent NK cells. Blood, 116 (2), pp. 183-192. | Show Abstract | Read more

Although bone marrow (BM) is the main site of natural killer (NK)-cell development in adult mice, recent studies have identified a distinct thymic-dependent NK pathway, implicating a possible close link between NK- and T-cell development in adult hematopoiesis. To investigate whether a potential NK-/T-lineage restriction of multipotent progenitors might take place already in the BM, we tested the full lineage potentials of NK-cell progenitors in adult BM. Notably, although Lin(-)CD122(+)NK1.1(-)DX5(-) NK-cell progenitors failed to commit to the B and myeloid lineages, they sustained a combined NK- and T-cell potential in vivo and in vitro at the single-cell level. Whereas T-cell development from NK/T progenitors is Notch-dependent, their contribution to thymic and BM NK cells remains Notch-independent. These findings demonstrate the existence of bipotent NK-/T-cell progenitors in adult BM.

Böiers C, Buza-Vidas N, Jensen CT, Pronk CJH, Kharazi S, Wittmann L, Sitnicka E, Hultquist A, Jacobsen SEW. 2010. Expression and role of FLT3 in regulation of the earliest stage of normal granulocyte-monocyte progenitor development. Blood, 115 (24), pp. 5061-5068. | Show Abstract | Read more

Mice deficient in c-fms-like tyrosine kinase 3 (FLT3) signaling have reductions in early multipotent and lymphoid progenitors, whereas no evident myeloid phenotype has been reported. However, activating mutations of Flt3 are among the most common genetic events in acute myeloid leukemia and mice harboring internal tandem duplications within Flt3 (Flt3-ITD) develop myeloproliferative disease, with characteristic expansion of granulocyte-monocyte (GM) progenitors (GMP), possibly compatible with FLT3-ITD promoting a myeloid fate of multipotent progenitors. Alternatively, FLT3 might be expressed at the earliest stages of GM development. Herein, we investigated the expression, function, and role of FLT3 in recently identified early GMPs. Flt3-cre fate-mapping established that most progenitors and mature progeny of the GM lineage are derived from Flt3-expressing progenitors. A higher expression of FLT3 was found in preGMP compared with GMP, and preGMPs were more responsive to stimulation with FLT3 ligand (FL). Whereas preGMPs and GMPs were reduced in Fl(-/-) mice, megakaryocyte-erythroid progenitors were unaffected and lacked FLT3 expression. Notably, mice deficient in both thrombopoietin (THPO) and FL had a more pronounced GMP phenotype than Thpo(-/-) mice, establishing a role of FL in THPO-dependent and -independent regulation of GMPs, of likely significance for myeloid malignancies with Flt3-ITD mutations.

Kranc KR, Schepers H, Rodrigues NP, Bamforth S, Villadsen E, Ferry H, Bouriez-Jones T, Sigvardsson M, Bhattacharya S, Jacobsen SE, Enver T. 2009. Cited2 is an essential regulator of adult hematopoietic stem cells. Cell Stem Cell, 5 (6), pp. 659-665. | Show Abstract | Read more

The regulatory pathways necessary for the maintenance of adult hematopoietic stem cells (HSCs) remain poorly defined. By using loss-of-function approaches, we report a selective and cell-autonomous requirement for the p300/CBP-binding transcriptional coactivator Cited2 in adult HSC maintenance. Conditional deletion of Cited2 in the adult mouse results in loss of HSCs causing multilineage bone marrow failure and increased lethality. In contrast, conditional ablation of Cited2 after lineage specification in lymphoid and myeloid lineages has no impact on the maintenance of these lineages. Additional deletion of Ink4a/Arf (encoding p16(Ink4a) and p19(Arf)) or Trp53 (encoding p53, a downstream target of p19(Arf)) in a Cited2-deficient background restores HSC functionality and rescues mice from bone marrow failure. Furthermore, we show that the critical role of Cited2 in primitive hematopoietic cells is conserved in humans. Taken together, our studies provide genetic evidence that Cited2 selectively maintains adult HSC functions, at least in part, via Ink4a/Arf and Trp53.

Bereshchenko O, Mancini E, Moore S, Bilbao D, Månsson R, Luc S, Grover A, Jacobsen SEW, Bryder D, Nerlov C. 2009. Hematopoietic stem cell expansion precedes the generation of committed myeloid leukemia-initiating cells in C/EBPalpha mutant AML. Cancer Cell, 16 (5), pp. 390-400. | Show Abstract | Read more

We here use knockin mutagenesis in the mouse to model the spectrum of acquired CEBPA mutations in human acute myeloid leukemia. We find that C-terminal C/EBPalpha mutations increase the proliferation of long-term hematopoietic stem cells (LT-HSCs) in a cell-intrinsic manner and override normal HSC homeostasis, leading to expansion of premalignant HSCs. However, such mutations impair myeloid programming of HSCs and block myeloid lineage commitment when homozygous. In contrast, N-terminal C/EBPalpha mutations are silent with regards to HSC expansion, but allow the formation of committed myeloid progenitors, the templates for leukemia-initiating cells. The combination of N- and C-terminal C/EBPalpha mutations incorporates both features, accelerating disease development and explaining the clinical prevalence of this configuration of CEBPA mutations.

Bröske A-M, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, Kuhl C, Enns A, Prinz M, Jaenisch R et al. 2009. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet, 41 (11), pp. 1207-1215. | Show Abstract | Read more

DNA methylation is a dynamic epigenetic mark that undergoes extensive changes during differentiation of self-renewing stem cells. However, whether these changes are the cause or consequence of stem cell fate remains unknown. Here, we show that alternative functional programs of hematopoietic stem cells (HSCs) are governed by gradual differences in methylation levels. Constitutive methylation is essential for HSC self-renewal but dispensable for homing, cell cycle control and suppression of apoptosis. Notably, HSCs from mice with reduced DNA methyltransferase 1 activity cannot suppress key myeloerythroid regulators and thus can differentiate into myeloerythroid, but not lymphoid, progeny. A similar methylation dosage effect controls stem cell function in leukemia. These data identify DNA methylation as an essential epigenetic mechanism to protect stem cells from premature activation of predominant differentiation programs and suggest that methylation dynamics determine stem cell functions in tissue homeostasis and cancer.

Liuba K, Pronk CJH, Stott SRW, Jacobsen S-EW. 2009. Polyclonal T-cell reconstitution of X-SCID recipients after in utero transplantation of lymphoid-primed multipotent progenitors. Blood, 113 (19), pp. 4790-4798. | Show Abstract | Read more

Although successful in utero hematopoietic cell transplantation (IUHCT) of X-linked severe combined immune deficiency (X-SCID) with enriched stem and progenitor cells was achieved more than a decade ago, it remains applied only in rare cases. Although this in part reflects that postnatal transplantations have overall given good results, there are no direct comparisons between IUHCT and postnatal transplantations of X-SCID. The proposed tolerance of the fetal immune system to foreign human leukocyte antigen early in gestation, a main rationale behind IUHCT, has recently been challenged by evidence for a considerable immune barrier against in utero transplanted allogeneic bone marrow cells. Consequently, there is need for further exploring the application of purified stem and progenitor cells to overcome this barrier also in IUHCT. Herein, we demonstrate in a congenic setting that recently identified lymphoid-primed multipotent progenitors are superior to hematopoietic stem cells in providing rapid lymphoid reconstitution after IUHCT of X-SCID recipients, and sustain in the long-term B cells, polyclonal T cells, as well as short-lived B-cell progenitors and thymic T-cell precursors. We further provide evidence for IUHCT of hematopoietic stem cells giving superior B- and T-cell reconstitution in fetal X-SCID recipients compared with neonatal and adolescent recipients.

Enver T, Jacobsen SEW. 2009. Developmental biology: Instructions writ in blood. Nature, 461 (7261), pp. 183-184. | Show Abstract | Read more

It seems that growth factors may instruct blood-cell progenitors to develop into specific mature cell types, actively determining lineage choice. But is this reductionist view of cell fate overly simplistic? © 2009 Macmillan Publishers Limited. All rights reserved.

Thored P, Heldmann U, Gomes-Leal W, Gisler R, Darsalia V, Taneera J, Nygren JM, Jacobsen S-EW, Ekdahl CT, Kokaia Z, Lindvall O. 2009. Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia, 57 (8), pp. 835-849. | Show Abstract | Read more

Neural stem cells (NSCs) in the adult rat subventricular zone (SVZ) generate new striatal neurons during several months after ischemic stroke. Whether the microglial response associated with ischemic injury extends into SVZ and influences neuroblast production is unknown. Here, we demonstrate increased numbers of activated microglia in ipsilateral SVZ concomitant with neuroblast migration into the striatum at 2, 6, and 16 weeks, with maximum at 6 weeks, following 2 h middle cerebral artery occlusion in rats. In the peri-infarct striatum, numbers of activated microglia peaked already at 2 weeks and declined thereafter. Microglia in SVZ were resident or originated from bone marrow, with maximum proliferation during the first 2 weeks postinsult. In SVZ, microglia exhibited ramified or intermediate morphology, signifying a downregulated inflammatory profile, whereas amoeboid or round phagocytic microglia were frequent in the peri-infarct striatum. Numbers of microglia expressing markers of antigen-presenting cells (MHC-II, CD86) increased in SVZ but very few lymphocytes were detected. Using quantitative PCR, strong short- and long-term increase (at 1 and 6 weeks postinfarct) of insulin-like growth factor-1 (IGF-1) gene expression was detected in SVZ tissue. Elevated numbers of IGF-1-expressing microglia were found in SVZ at 2, 6, and 16 weeks after stroke. At 16 weeks, 5% of microglia but no other cells in SVZ expressed the IGF-1 protein, which mitigates apoptosis and promotes proliferation and differentiation of NSCs. The long-term accumulation of microglia with proneurogenic phenotype in the SVZ implies a supportive role of these cells for the continuous neurogenesis after stroke.

Tormin A, Brune JC, Olsson E, Valcich J, Neuman U, Olofsson T, Jacobsen S-E, Scheding S. 2009. Characterization of bone marrow-derived mesenchymal stromal cells (MSC) based on gene expression profiling of functionally defined MSC subsets. Cytotherapy, 11 (2), pp. 114-128. | Show Abstract | Read more

BACKGROUND AIMS: Human mesenchymal stromal cells (MSC) are promising candidates for cell therapy because of their intriguing properties (high proliferation and differentiation capacity, microenvironmental function and immune modulation). However, MSC are heterogeneous and a better understanding of the heterogeneity of the cells that form the MSC cultures is critical. METHODS: Human MSC were generated in standard cultures and stained with carboxyfluorescein succinimidyl ester (CFSE) for cell division tracking. Gene expression profiling of MSC that were sorted based on functional parameters (i.e. proliferation characteristics) was utilized to characterize potential MSC subpopulations (progenitor content and differentiation capacity) and identify potential MSC subpopulation markers. RESULTS: The majority of MSC had undergone more than two cell divisions (79.7+/-2.0%) after 10 days of culture, whereas 3.5+/-0.9% of MSC had not divided. MSC were then sorted into rapidly dividing cells (RDC) and slowly/non-dividing cells (SDC/NDC). Colony-forming unit-fibroblast (CFU-F) frequencies were lowest in NDC and highest in RDC with low forward-/side-scatter properties (RDC(lolo)). Comparative microarray analysis of NDC versus RDC identified 102 differentially expressed genes. Two of these genes (FMOD and VCAM1) corresponded to cell-surface molecules that enabled the prospective identification of a VCAM1(+)/FMOD(+) MSC subpopulation, which increased with passage and showed very low progenitor activity and limited differentiation potential. CONCLUSIONS: These data clearly demonstrate functional differences within MSC cultures. Furthermore, this study shows that cell sorting based on proliferation characteristics and gene expression profiling can be utilized to identify surface markers for the characterization of MSC subpopulations.

Buza-Vidas N, Cheng M, Duarte S, Charoudeh HN, Jacobsen SEW, Sitnicka E. 2009. FLT3 receptor and ligand are dispensable for maintenance and posttransplantation expansion of mouse hematopoietic stem cells. Blood, 113 (15), pp. 3453-3460. | Show Abstract | Read more

Originally cloned from hematopoietic stem cell (HSC) populations and its ligand being extensively used to promote ex vivo HSC expansion, the FMS-like tyrosine kinase 3 (FLT3; also called FLK2) receptor and its ligand (FL) were expected to emerge as an important physiologic regulator of HSC maintenance and expansion. However, the role of FLT3 receptor and ligand in HSC regulation remains unclear and disputed. Herein, using Fl-deficient mice, we establish for the first time that HSC expansion in fetal liver and after transplantation is FL independent. Because previous findings in Flk2(-/-) mice were compatible with an important role of FLT3 receptor in HSC regulation and because alternative ligands might potentially interact directly or indirectly with FLT3 receptor, we here also characterized HSCs in Flk2(-/-) mice. Advanced phenotypic as well as functional evaluation of Flk2(-/-) HSCs showed that the FLT3 receptor is dispensable for HSC steady-state maintenance and expansion after transplantation. Taken together, these studies show that the FLT3 receptor and ligand are not critical regulators of mouse HSCs, neither in steady state nor during fetal or posttransplantation expansion.

Tipping AJ, Pina C, Castor A, Hong D, Rodrigues NP, Lazzari L, May GE, Jacobsen SEW, Enver T. 2009. High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood, 113 (12), pp. 2661-2672. | Show Abstract | Read more

Evidence suggests the transcription factor GATA-2 is a critical regulator of murine hematopoietic stem cells. Here, we explore the relation between GATA-2 and cell proliferation and show that inducing GATA-2 increases quiescence (G(0) residency) of murine and human hematopoietic cells. In human cord blood, quiescent fractions (CD34(+)CD38(-)Hoechst(lo)Pyronin Y(lo)) express more GATA-2 than cycling counterparts. Enforcing GATA-2 expression increased quiescence of cord blood cells, reducing proliferation and performance in long-term culture-initiating cell and colony-forming cell (CFC) assays. Gene expression analysis places GATA-2 upstream of the quiescence regulator MEF, but enforcing MEF expression does not prevent GATA-2-conferred quiescence, suggesting additional regulators are involved. Although known quiescence regulators p21(CIP1) and p27(KIP1) do not appear to be responsible, enforcing GATA-2 reduced expression of regulators of cell cycle such as CCND3, CDK4, and CDK6. Enforcing GATA-2 inhibited human hematopoiesis in vivo: cells with highest exogenous expression (GATA-2(hi)) failed to contribute to hematopoiesis in nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice, whereas GATA-2(lo) cells contributed with delayed kinetics and low efficiency, with reduced expression of Ki-67. Thus, GATA-2 activity inhibits cell cycle in vitro and in vivo, highlighting GATA-2 as a molecular entry point into the transcriptional program regulating quiescence in human hematopoietic stem and progenitor cells.

Cheng M, Charoudeh HN, Brodin P, Tang Y, Lakshmikanth T, Höglund P, Jacobsen SEW, Sitnicka E. 2009. Distinct and overlapping patterns of cytokine regulation of thymic and bone marrow-derived NK cell development. J Immunol, 182 (3), pp. 1460-1468. | Show Abstract

Although bone marrow (BM) represents the main site for postnatal NK cell development, recently a distinct thymic-dependent NK cell pathway was identified. These studies were designed to investigate the role of cytokines in regulation of thymic NK cells and to compare with established regulatory pathways of BM-dependent NK cell compartment. The common cytokine receptor gamma-chain (Il2rg) essential for IL-15-induced signaling, and FMS-like tyrosine kinase 3 (FLT3) receptor ligand (Flt3l) were previously identified as important regulatory pathways of the BM NK cell compartment based on lack of function studies in mice, however their complementary action remains unknown. By investigating mice double-deficient in Il2rg and Flt3l (Flt3l(-/-) Il2rg(-/-)), we demonstrate that FLT3L is important for IL2Rg-independent maintenance of both immature BM as well as peripheral NK cells. In contrast to IL-7, which is dispensable for BM but important for thymic NK cells, IL-15 has a direct and important role in both thymic and BM NK cell compartments. Although thymic NK cells were not affected in Flt3l(-/-) mice, Flt3l(-/-)Il2rg(-/-) mice lacked detectable thymic NK cells, suggesting that FLT3L is also important for IL-2Rg-independent maintenance of thymic NK cells. Thus, IL-2Rg cytokines and FLT3L play complementary roles and are indispensable for homeostasis of both BM and thymic dependent NK cell development, suggesting that the cytokine pathways crucial for these two distinct NK cell pathways are largely overlapping.

Jensen CT, Kharazi S, Böiers C, Cheng M, Lübking A, Sitnicka E, Jacobsen SEW. 2008. FLT3 ligand and not TSLP is the key regulator of IL-7-independent B-1 and B-2 B lymphopoiesis. Blood, 112 (6), pp. 2297-2304. | Show Abstract | Read more

Phenotypically and functionally distinct progenitors and developmental pathways have been proposed to exist for fetally derived B-1 and conventional B-2 cells. Although IL-7 appears to be the primary cytokine regulator of fetal and adult B lymphopoiesis in mice, considerable fetal B lymphopoiesis and postnatal B cells are sustained in the absence of IL-7; in humans, B-cell generation is suggested to be largely IL-7-independent, as severe combined immune-deficient patients with IL-7 deficiency appear to have normal B-cell numbers. However, the role of other cytokines in IL-7-independent B lymphopoiesis remains to be established. Although thymic stromal lymphopoietin (TSLP) has been proposed to be the main factor driving IL-7-independent B lymphopoiesis and to distinguish fetal from adult B-cell progenitor development in mice, recent studies failed to support a primary role of TSLP in IL-7-independent fetal B-cell development. However, the role of TSLP in IL-7-independent adult B lymphopoiesis and in particular in regulation of B-1 cells remains to be established. Here we demonstrate that, rather than TSLP, IL-7 and FLT3 ligand are combined responsible for all B-cell generation in mice, including recently identified B-1-specified cell progenitors. Thus, the same IL-7- and FLT3 ligand-mediated signal-ing regulates alternative pathways of fetal and adult B-1 and B-2 lymphopoiesis.

Luc S, Buza-Vidas N, Jacobsen SEW. 2008. Delineating the cellular pathways of hematopoietic lineage commitment. Semin Immunol, 20 (4), pp. 213-220. | Show Abstract | Read more

The prevailing model for adult hematopoiesis postulates that the first lineage commitment step results in a strict separation of common myeloid and common lymphoid pathways. However, the recent identification of granulocyte/monocyte (GM)-lymphoid restricted lymphoid-primed multipotent progenitors (LMPPs) and primitive common myeloid progenitors (CMPs) within the "HSC" compartment provide compelling support for establishment of independent GM-megakaryocyte/erythroid (GM-MkE) and GM-lymphoid commitment pathways as decisive early lineage fate decisions. These changes in lineage potentials are corroborated by corresponding changes in multilineage transcriptional priming, as LMPPs down-regulate MkE priming but become GM-lymphoid transcriptionally primed, whereas CMPs are GM-MkE primed. These distinct biological and molecular relationships are established already in the fetal liver.

Weischenfeldt J, Damgaard I, Bryder D, Theilgaard-Mönch K, Thoren LA, Nielsen FC, Jacobsen SEW, Nerlov C, Porse BT. 2008. NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev, 22 (10), pp. 1381-1396. | Show Abstract | Read more

Nonsense-mediated mRNA decay (NMD) is a post-transcriptional surveillance process that eliminates mRNAs containing premature termination codons (PTCs). NMD has been hypothesized to impact on several aspects of cellular function; however, its importance in the context of a mammalian organism has not been addressed in detail. Here we use mouse genetics to demonstrate that hematopoietic-specific deletion of Upf2, a core NMD factor, led to the rapid, complete, and lasting cell-autonomous extinction of all hematopoietic stem and progenitor populations. In contrast, more differentiated cells were only mildly affected in Upf2-null mice, suggesting that NMD is mainly essential for proliferating cells. Furthermore, we show that UPF2 loss resulted in the accumulation of nonproductive rearrangement by-products from the Tcrb locus and that this, as opposed to the general loss of NMD, was particularly detrimental to developing T-cells. At the molecular level, gene expression analysis showed that Upf2 deletion led to a profound skewing toward up-regulated mRNAs, highly enriched in transcripts derived from processed pseudogenes, and that NMD impacts on regulated alternative splicing events. Collectively, our data demonstrate a unique requirement of NMD for organismal survival.

Mansson R, Zandi S, Anderson K, Martensson I-L, Jacobsen SEW, Bryder D, Sigvardsson M. 2008. B-lineage commitment prior to surface expression of B220 and CD19 on hematopoietic progenitor cells. Blood, 112 (4), pp. 1048-1055. | Show Abstract | Read more

Commitment of hematopoietic progenitor cells to B-lymphoid cell fate has been suggested to coincide with the development of PAX5-expressing B220(+)CD19(+) pro-B cells. We have used a transgenic reporter mouse, expressing human CD25 under the control of the B-lineage-restricted Igll1 (lambda5) promoter to investigate the lineage potential of early progenitor cells in the bone marrow. This strategy allowed us to identify a reporter expressing LIN(-)B220(-)CD19(-)CD127(+)FLT3(+)SCA1(low)KIT(low) population that displays a lack of myeloid and a 90% reduction in in vitro T-cell potential compared with its reporter-negative counterpart. Gene expression analysis demonstrated that these lineage-restricted cells express B-lineage-associated genes to levels comparable with that observed in pro-B cells. These data suggest that B-lineage commitment can occur before the expression of B220 and CD19.

Kirstetter P, Schuster MB, Bereshchenko O, Moore S, Dvinge H, Kurz E, Theilgaard-Mönch K, Månsson R, Pedersen TA, Pabst T et al. 2008. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer Cell, 13 (4), pp. 299-310. | Show Abstract | Read more

Mutations in the CEBPA gene are present in 7%-10% of human patients with acute myeloid leukemia (AML). However, no genetic models exist that demonstrate their etiological relevance. To mimic the most common mutations affecting CEBPA-that is, those leading to loss of the 42 kDa C/EBPalpha isoform (p42) while retaining the 30kDa isoform (p30)-we modified the mouse Cebpa locus to express only p30. p30 supported the formation of granulocyte-macrophage progenitors. However, p42 was required for control of myeloid progenitor proliferation, and p42-deficient mice developed AML with complete penetrance. p42-deficient leukemia could be transferred by a Mac1+c-Kit+ population that gave rise only to myeloid cells in recipient mice. Expression profiling of this population against normal Mac1+c-Kit+ progenitors revealed a signature shared with MLL-AF9-transformed AML.

Thorén LA, Liuba K, Bryder D, Nygren JM, Jensen CT, Qian H, Antonchuk J, Jacobsen S-EW. 2008. Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol, 180 (4), pp. 2045-2053. | Show Abstract

Hematopoietic stem cell (HSC) numbers are tightly regulated and maintained in postnatal hematopoiesis. Extensive studies have supported a role of the cytokine tyrosine kinase receptor Kit in sustaining cycling HSCs when competing with wild-type HSCs posttransplantation, but not in maintenance of quiescent HSCs in steady state adult bone marrow. In this study, we investigated HSC regulation in White Spotting 41 (Kit(W41/W41)) mice, with a partial loss of function of Kit. Although the extensive fetal HSC expansion was Kit-independent, adult Kit(W41/W41) mice had an almost 2-fold reduction in long-term HSCs, reflecting a loss of roughly 10,000 Lin(-)Sca-1(+)Kit(high) (LSK)CD34(-)Flt3(-) long-term HSCs by 12 wk of age, whereas LSKCD34(+)Flt3(-) short-term HSCs and LSKCD34(+)Flt3(+) multipotent progenitors were less affected. Whereas homing and initial reconstitution of Kit(W41/W41) bone marrow cells in myeloablated recipients were close to normal, self-renewing Kit(W41/W41) HSCs were progressively depleted in not only competitive but also noncompetitive transplantation assays. Overexpression of the anti-apoptotic regulator BCL-2 partially rescued the posttransplantation Kit(W41/W41) HSC deficiency, suggesting that Kit might at least in the posttransplantation setting in part sustain HSC numbers by promoting HSC survival. Most notably, accelerated in vivo BrdU incorporation and cell cycle kinetics implicated a previously unrecognized role of Kit in maintaining quiescent HSCs in steady state adult hematopoiesis.

Jensen CT, Böiers C, Kharazi S, Lübking A, Rydén T, Sigvardsson M, Sitnicka E, Jacobsen SEW. 2008. Permissive roles of hematopoietin and cytokine tyrosine kinase receptors in early T-cell development. Blood, 111 (4), pp. 2083-2090. | Show Abstract | Read more

Although several cytokines have been demonstrated to be critical regulators of development of multiple blood cell lineages, it remains disputed to what degree they act through instructive or permissive mechanisms. Signaling through the FMS-like tyrosine kinase 3 (FLT3) receptor and the hematopoietin IL-7 receptor alpha (IL-7Ralpha) has been demonstrated to be of critical importance for sustained thymopoiesis. Signaling triggered by IL-7 and thymic stromal lymphopoietin (TSLP) is dependent on IL-7Ralpha, and both ligands have been implicated in T-cell development. However, we demonstrate that, whereas thymopoiesis is abolished in adult mice doubly deficient in IL-7 and FLT3 ligand (FLT3L), TSLP does not play a key role in IL-7-independent or FLT3L-independent T lymphopoiesis. Furthermore, whereas previous studies implicated that the role of other cytokine tyrosine kinase receptors in T lymphopoiesis might not involve permissive actions, we demonstrate that ectopic expression of BCL2 is sufficient not only to partially correct the T-cell phenotype of Flt3l(-/-) mice but also to rescue the virtually complete loss of all discernable stages of early T lymphopoiesis in Flt3l(-/-)Il7r(-/-) mice. These findings implicate a permissive role of cytokine receptors of the hematopoietin and tyrosine kinase families in early T lymphopoiesis.

Nygren JM, Liuba K, Breitbach M, Stott S, Thorén L, Roell W, Geisen C, Sasse P, Kirik D, Björklund A et al. 2008. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat Cell Biol, 10 (5), pp. 584-592. | Show Abstract | Read more

Recent studies have suggested that regeneration of non-haematopoietic cell lineages can occur through heterotypic cell fusion with haematopoietic cells of the myeloid lineage. Here we show that lymphocytes also form heterotypic-fusion hybrids with cardiomyocytes, skeletal muscle, hepatocytes and Purkinje neurons. However, through lineage fate-mapping we demonstrate that such in vivo fusion of lymphoid and myeloid blood cells does not occur to an appreciable extent in steady-state adult tissues or during normal development. Rather, fusion of blood cells with different non-haematopoietic cell types is induced by organ-specific injuries or whole-body irradiation, which has been used in previous studies to condition recipients of bone marrow transplants. Our findings demonstrate that blood cells of the lymphoid and myeloid lineages contribute to various non-haematopoietic tissues by forming rare fusion hybrids, but almost exclusively in response to injuries or inflammation.

Luc S, Anderson K, Kharazi S, Buza-Vidas N, Böiers C, Jensen CT, Ma Z, Wittmann L, Jacobsen SEW. 2008. Down-regulation of Mpl marks the transition to lymphoid-primed multipotent progenitors with gradual loss of granulocyte-monocyte potential. Blood, 111 (7), pp. 3424-3434. | Show Abstract | Read more

Evidence for a novel route of adult hematopoietic stem-cell lineage commitment through Lin-Sca-1+Kit+Flt3hi (LSKFlt3hi) lymphoid-primed multipotent progenitors (LMPPs) with granulocyte/monocyte (GM) and lymphoid but little or no megakaryocyte/erythroid (MkE) potential was recently challenged, as LSKFlt3hi cells were reported to possess MkE potential. Herein, residual (1%-2%) MkE potential segregated almost entirely with LSKFlt3hi cells expressing the thrombopoietin receptor (Mpl), whereas LSKFlt3hiMpl- LMPPs lacked significant MkE potential in vitro and in vivo, but sustained combined GM and lymphoid potentials, and coexpressed GM and lymphoid but not MkE transcriptional lineage programs. Gradually increased transcriptional lymphoid priming in single LMPPs from Rag1GFP mice was shown to occur in the presence of maintained GM lineage priming, but gradually reduced GM lineage potential. These functional and molecular findings reinforce the existence of GM/lymphoid-restricted progenitors with dramatically down-regulated probability for committing toward MkE fates, and support that lineage restriction occurs through gradual rather than abrupt changes in specific lineage potentials.

Hansson F, Toporski J, Månsson R, Johansson B, Norén-Nyström U, Jacobsen SEW, Wiebe T, Larsson M, Sigvardsson M, Castor A. 2008. Exit of pediatric pre-B acute lymphoblastic leukaemia cells from the bone marrow to the peripheral blood is not associated with cell maturation or alterations in gene expression. Mol Cancer, 7 (1), pp. 67. | Show Abstract | Read more

BACKGROUND: Childhood pre-B acute lymphoblastic leukemia (ALL) is a bone marrow (BM) derived disease, which often disseminates out of the BM cavity, where malignant cells to a variable degree can be found circulating in the peripheral blood (PB). Normal pre-B cells are absolutely dependent on BM stroma for survival and differentiation. It is not known whether transformed pre-B ALL cells retain any of this dependence, which possibly could impact on drug sensitivity or MRD measurements. RESULTS: Pre-B ALL cells, highly purified by a novel method using surface expression of CD19 and immunoglobulin light chains, from BM and PB show a very high degree of similarity in gene expression patterns, with differential expression of vascular endothelial growth factor (VEGF) as a notable exception. In addition, the cell sorting procedure revealed that in 2 out of five investigated patients, a significant fraction of the malignant cells had matured beyond the pre-B cell stage. CONCLUSION: The transition of ALL cells from the BM into the circulation does not demand, or result in, major changes of gene expression pattern. This might indicate an independence of BM stroma on the part of transformed pre-B cells, which contrasts with that of their normal counterparts.

Buitenhuis M, Verhagen LP, van Deutekom HWM, Castor A, Verploegen S, Koenderman L, Jacobsen S-EW, Coffer PJ. 2008. Protein kinase B (c-akt) regulates hematopoietic lineage choice decisions during myelopoiesis. Blood, 111 (1), pp. 112-121. | Show Abstract | Read more

Hematopoiesis is a highly regulated process resulting in the formation of all blood lineages. Aberrant regulation of phosphatidylinositol-3-kinase (PI3K) signaling has been observed in hematopoietic malignancies, suggesting that regulated PI3K signaling is critical for regulation of blood cell production. An ex vivo differentiation system was used to investigate the role of PI3K and its downstream effector, protein kinase B (PKB/c-akt) in myelopoiesis. PI3K activity was essential for hematopoietic progenitor survival. High PKB activity was found to promote neutrophil and monocyte development, while, conversely, reduction of PKB activity was required to induce optimal eosinophil differentiation. In addition, transplantation of beta2-microglobulin (-/-) NOD/SCID mice with CD34(+) cells ectopically expressing constitutively active PKB resulted in enhanced neutrophil and monocyte development, whereas ectopic expression of dominant-negative PKB induced eosinophil development in vivo. Inhibitory phosphorylation of C/EBPalpha on Thr222/226 was abrogated upon PKB activation in hematopoietic progenitors. Ectopic expression of a nonphosphorylatable C/EBPalpha mutant inhibited eosinophil differentiation ex vivo, whereas neutrophil development was induced, demonstrating the importance of PKB-mediated C/EBPalpha phosphorylation in regulation of granulopoiesis. These results identify an important novel role for PKB in regulation of cell fate choices during hematopoietic lineage commitment.

Qian H, Buza-Vidas N, Hyland CD, Jensen CT, Antonchuk J, Månsson R, Thoren LA, Ekblom M, Alexander WS, Jacobsen SEW. 2007. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell, 1 (6), pp. 671-684. | Show Abstract | Read more

The role of cytokines in regulation of hematopoietic stem cells (HSCs) remains poorly understood. Herein we demonstrate that thrombopoietin (THPO) and its receptor, MPL, are critically involved in postnatal steady-state HSC maintenance, reflected in a 150-fold reduction of HSCs in adult Thpo(-/-) mice. Further, whereas THPO and MPL proved not required for fetal HSC expansion, HSC expansion posttransplantation was highly MPL and THPO dependent. The distinct role of THPO in postnatal HSC maintenance is accompanied by accelerated HSC cell-cycle kinetics in Thpo(-/-) mice and reduced expression of the cyclin-dependent kinase inhibitors p57(Kip2) and p19(INK4D) as well as multiple Hox transcription factors. Although also predicted to be an HSC viability factor, BCL2 failed to rescue the HSC deficiency of Thpo(-/-) mice. Thus, THPO regulates posttransplantation HSC expansion as well as the maintenance of adult quiescent HSCs, of critical importance to avoid postnatal HSC exhaustion.

Grövdal M, Khan R, Aggerholm A, Antunovic P, Astermark J, Bernell P, Engström L-M, Kjeldsen L, Linder O, Nilsson L et al. 2007. Negative effect of DNA hypermethylation on the outcome of intensive chemotherapy in older patients with high-risk myelodysplastic syndromes and acute myeloid leukemia following myelodysplastic syndrome. Clin Cancer Res, 13 (23), pp. 7107-7112. | Show Abstract | Read more

PURPOSE: Promoter hypermethylation of, for example, tumor-suppressor genes, is considered to be an important step in cancerogenesis and a negative risk factor for survival in patients with myelodysplastic syndromes (MDS); however, its role for response to therapy has not been determined. This study was designed to assess the effect of methylation status on the outcome of conventional induction chemotherapy. EXPERIMENTAL DESIGN: Sixty patients with high-risk MDS or acute myeloid leukemia following MDS were treated with standard doses of daunorubicin and 1-beta-d-arabinofuranosylcytosine. Standard prognostic variables and methylation status of the P15(ink4b) (P15), E-cadherin (CDH), and hypermethylated in cancer 1 (HIC) genes were analyzed before treatment. RESULTS: Forty percent of the patients achieved complete remission (CR). CR rate was lower in patients with high WBC counts (P = 0.03) and high CD34 expression on bone marrow cells (P = 0.02). Whereas P15 status alone was not significantly associated with CR rate (P = 0.25), no patient with hypermethylation of all three genes achieved CR (P = 0.03). Moreover, patients with CDH methylation showed a significantly lower CR rate (P = 0.008), and CDH methylation retained its prognostic value also in the multivariate analysis. Hypermethylation was associated with increased CD34 expression, but not with other known predictive factors for response, such as cytogenetic profile. CONCLUSIONS: We show for the first time a significant effect of methylation status on the outcome of conventional chemotherapy in high-risk MDS and acute myelogenous leukemia following MDS. Provided confirmed in an independent study, our results should be used as a basis for therapeutic decision-making in this patient group.

Nilsson L, Edén P, Olsson E, Månsson R, Astrand-Grundström I, Strömbeck B, Theilgaard-Mönch K, Anderson K, Hast R, Hellström-Lindberg E et al. 2007. The molecular signature of MDS stem cells supports a stem-cell origin of 5q myelodysplastic syndromes. Blood, 110 (8), pp. 3005-3014. | Show Abstract | Read more

Global gene expression profiling of highly purified 5q-deleted CD34+CD38(-)Thy1+ cells in 5q- myelodysplastic syndromes (MDSs) supported that they might originate from and outcompete normal CD34+CD38(-)Thy1+ hematopoietic stem cells. Few but distinct differences in gene expression distinguished MDS and normal stem cells. Expression of BMI1, encoding a critical regulator of self-renewal, was up-regulated in 5q- stem cells. Whereas multiple previous MDS genetic screens failed to identify altered expression of the gene encoding the myeloid transcription factor CEBPA, stage-specific and extensive down-regulation of CEBPA was specifically observed in MDS progenitors. These studies establish the importance of molecular characterization of distinct stages of cancer stem and progenitor cells to enhance the resolution of stage-specific dysregulated gene expression.

Lee BH, Tothova Z, Levine RL, Anderson K, Buza-Vidas N, Cullen DE, McDowell EP, Adelsperger J, Fröhling S, Huntly BJP et al. 2007. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell, 12 (4), pp. 367-380. | Show Abstract | Read more

Despite their known transforming properties, the effects of leukemogenic FLT3-ITD mutations on hematopoietic stem and multipotent progenitor cells and on hematopoietic differentiation are not well understood. We report a mouse model harboring an ITD in the murine Flt3 locus that develops myeloproliferative disease resembling CMML and further identified FLT3-ITD mutations in a subset of human CMML. These findings correlated with an increase in number, cell cycling, and survival of multipotent stem and progenitor cells in an ITD dose-dependent manner in animals that exhibited alterations within their myeloid progenitor compartments and a block in normal B cell development. This model provides insights into the consequences of constitutive signaling by an oncogenic tyrosine kinase on hematopoietic progenitor quiescence, function, and cell fate.

Svensson M, Marsal J, Uronen-Hansson H, Cheng M, Jenkinson W, Cilio C, Jacobsen SEW, Sitnicka E, Anderson G, Agace WW. 2008. Involvement of CCR9 at multiple stages of adult T lymphopoiesis. J Leukoc Biol, 83 (1), pp. 156-164. | Show Abstract | Read more

The chemokine CCL25 is constitutively expressed in the thymus, and its receptor CCR9 is expressed on subsets of developing thymocytes. Nevertheless, the function of CCL25/CCR9 in adult thymopoiesis remains unclear. Here, we demonstrate that purified CCR9(-/-) hematopoietic stem cells are deficient in their ability to generate all major thymocyte subsets including double-negative 1 (DN1) cells in competitive transfers. CCR9(-/-) bone marrow contained normal numbers of lineage(-) Sca-1+c-kit+, common lymphoid progenitors, and lymphoid-primed multipotent progenitors (LMPP), and CCR9(-/-) LMPP showed similar T cell potential as their wild-type (WT) counterparts when cultured on OP9-delta-like 1 stromal cells. In contrast, early thymic progenitor and DN2 thymocyte numbers were reduced in the thymus of adult CCR9(-/-) mice. In fetal thymic organ cultures (FTOC), CCR9(-/-) DN1 cells were as efficient as WT DN1 cells in generating double-positive (DP) thymocytes; however, under competitive FTOC, CCR9(-/-) DP cell numbers were reduced significantly. Similarly, following intrathymic injection into sublethally irradiated recipients, CCR9(-/-) DN cells were out-competed by WT DN cells in generating DP thymocytes. Finally, in competitive reaggregation thymic organ cultures, CCR9(-/-) preselection DP thymocytes were disadvantaged significantly in their ability to generate CD4 single-positive (SP) thymocytes, a finding that correlated with a reduced ability to form TCR-MHC-dependent conjugates with thymic epithelial cells. Together, these results highlight a role for CCR9 at several stages of adult thymopoiesis: in hematopoietic progenitor seeding of the thymus, in the DN-DP thymocyte transition, and in the generation of CD4 SP thymocytes.

Jensen CT, Kharazi S, Böiers C, Liuba K, Jacobsen SEW. 2007. TSLP-mediated fetal B lymphopoiesis? Nat Immunol, 8 (9), pp. 897. | Read more

Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JWU, Tiemann K, Bohlen H, Hescheler J et al. 2007. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110 (4), pp. 1362-1369. | Show Abstract | Read more

Cellular replacement therapy has emerged as a novel strategy for the treatment of heart failure. The aim of our study was to determine the fate of injected mesenchymal stem cells (MSCs) and whole bone marrow (BM) cells in the infarcted heart. MSCs were purified from BM of transgenic mice and characterized using flow cytometry and in vitro differentiation assays. Myocardial infarctions were generated in mice and different cell populations including transgenic MSCs, unfractionated BM cells, or purified hematopoietic progenitors were injected. Encapsulated structures were found in the infarcted areas of a large fraction of hearts after injecting MSCs (22 of 43, 51.2%) and unfractionated BM cells (6 of 46, 13.0%). These formations contained calcifications and/or ossifications. In contrast, no pathological abnormalities were found after injection of purified hematopoietic progenitors (0 of 5, 0.0%), fibroblasts (0 of 5, 0.0%), vehicle only (0 of 30, 0.0%), or cytokine-induced mobilization of BM cells (0 of 35, 0.0%). We conclude that the developmental fate of BM-derived cells is not restricted by the surrounding tissue after myocardial infarction and that the MSC fraction underlies the extended bone formation in the infarcted myocardium. These findings seriously question the biologic basis and clinical safety of using whole BM and in particular MSCs to treat nonhematopoietic disorders.

Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, Jacobsen SE, Nuber UA. 2007. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res, 67 (12), pp. 5727-5736. | Show Abstract | Read more

Human brain tumor stem cells have been enriched using antibodies against the surface protein CD133. An antibody recognizing CD133 also served to isolate normal neural stem cells from fetal human brain, suggesting a possible lineage relationship between normal neural and brain tumor stem cells. Whether CD133-positive brain tumor stem cells can be derived from CD133-positive neural stem or progenitor cells still requires direct experimental evidence, and an important step toward such investigations is the identification and characterization of normal CD133-presenting cells in neurogenic regions of the embryonic and adult brain. Here, we present evidence that CD133 is a marker for embryonic neural stem cells, an intermediate radial glial/ependymal cell type in the early postnatal stage, and for ependymal cells in the adult brain, but not for neurogenic astrocytes in the adult subventricular zone. Our findings suggest two principal possibilities for the origin of brain tumor stem cells: a derivation from CD133-expressing cells, which are normally not present in the adult brain (embryonic neural stem cells and an early postnatal intermediate radial glial/ependymal cell type), or from CD133-positive ependymal cells in the adult brain, which are, however, generally regarded as postmitotic. Alternatively, brain tumor stem cells could be derived from proliferative but CD133-negative neurogenic astrocytes in the adult brain. In the latter case, brain tumor development would involve the production of CD133.

Fujimoto T, Anderson K, Jacobsen SEW, Nishikawa S-I, Nerlov C. 2007. Cdk6 blocks myeloid differentiation by interfering with Runx1 DNA binding and Runx1-C/EBPalpha interaction. EMBO J, 26 (9), pp. 2361-2370. | Show Abstract | Read more

Interactions between the cell cycle machinery and transcription factors play a central role in coordinating terminal differentiation and proliferation arrest. We here show that cyclin-dependent kinase 6 (Cdk6) is specifically expressed in proliferating hematopoietic progenitor cells, and that Cdk6 inhibits transcriptional activation by Runx1, but not C/EBPalpha or PU.1. Cdk6 inhibits Runx1 activity by binding to the runt domain of Runx1, interfering with Runx1 DNA binding and Runx1-C/EBPalpha interaction. Cdk6 expression increased myeloid progenitor proliferation, and inhibited myeloid lineage-specific gene expression and terminal differentiation in vitro and in vivo. These effects of Cdk6 did not require Cdk6 kinase activity. Cdk6-mediated inhibition of granulocytic differentiation could be reversed by excess Runx1, consistent with Runx1 being the major target for Cdk6. We propose that Cdk6 downregulation in myeloid progenitors releases Runx1 from Cdk6 inhibition, thereby allowing terminal differentiation. Since Runx transcription factors play central roles in hematopoietic, neuronal and osteogenic lineages, this novel, noncanonical Cdk6 function may control terminal differentiation in multiple tissues and cell types.

Anderson K, Rusterholz C, Månsson R, Jensen CT, Bacos K, Zandi S, Sasaki Y, Nerlov C, Sigvardsson M, Jacobsen SEW. 2007. Ectopic expression of PAX5 promotes maintenance of biphenotypic myeloid progenitors coexpressing myeloid and B-cell lineage-associated genes. Blood, 109 (9), pp. 3697-3705. | Show Abstract | Read more

The transcription factor PAX5 is a critical regulator of B-cell commitment and development. Although normally not expressed in myeloid progenitors, PAX5 has recently been shown to be frequently expressed in myeloid malignancies and to suppress expression of myeloid differentiation genes, compatible with an effect on the differentiation or maintenance of myeloid progenitors. However, previous studies in which PAX5 was ectopically expressed in normal myeloid progenitors in vivo and in vitro provided conflicting results as to the effect of PAX5 on myeloid development. Herein, we demonstrate that on ectopic expression of PAX5 in bone marrow multipotent stem/progenitor cells, cells with a biphenotypic B220(+)GR-1/MAC-1(+) phenotype are produced. These remain cytokine-dependent, but unlike control-transduced cells they sustain long-term generation of myeloid progenitors in vitro and remain capable of myeloid differentiation. Notably, PAX5(+)B220(+)GR-1/MAC-1(+) myeloid progenitors coexpress, at the single-cell level, myeloid genes and otherwise B-cell-specific PAX5 target genes. These findings establish that ectopic expression of PAX5 introduces extensive self-renewal properties in otherwise short-lived myeloid progenitors. Along with the established ectopic expression of PAX5 in acute myeloid leukemia, this motivates a careful investigation of the potential involvement of ectopic PAX5 expression in myeloid and biphenotypic leukemias.

Buza-Vidas N, Luc S, Jacobsen SEW. 2007. Delineation of the earliest lineage commitment steps of haematopoietic stem cells: new developments, controversies and major challenges. Curr Opin Hematol, 14 (4), pp. 315-321. | Show Abstract | Read more

PURPOSE OF REVIEW: This review addresses recently reported evidence for alternative cellular pathways for haematopoietic stem cell lineage commitment. RECENT FINDINGS: Using various approaches, several laboratories suggested the existence of adult as well as foetal multipotent progenitor cells with combined B cell, T cell and granulocyte/macrophage potential, but little or no megakaryocyte/erythroid potential. Compared with haematopoietic stem cells, these multipotent progenitor cells exhibited downregulated transcriptional expression of genes of the megakaryocyte/erythroid lineages and upregulated expression of lymphoid lineage genes. The existence of these lineage-restricted multipotent progenitor cells suggests that the first lineage commitment step of haematopoietic stem cells does not result in strict separation into myelopoiesis and lymphopoiesis, and that there might be alternative pathways for commitment toward different lineage fates. These findings have been questioned by other studies, however. To resolve this controversy and establish the complete road map for haematopoietic lineage commitment, improved tools and more stringent standards for how to identify and characterize lineage fate options of distinct stem and progenitor cells are needed. SUMMARY: Current and future progress in establishing the complete cellular roadmap for haematopoietic lineage commitment will permit identification and characterization of key regulators of lineage fate decisions in haematopoietic stem cells.

Luc S, Buza-Vidas N, Jacobsen SEW. 2007. Biological and molecular evidence for existence of lymphoid-primed multipotent progenitors. Ann N Y Acad Sci, 1106 (1), pp. 89-94. | Show Abstract | Read more

Studies from our and other laboratories have over the last 2 years implicated the existence of multipotent progenitors (MPPs) with combined granulocyte-macrophage, B cell, and T cell potential, but little or no megakaryocyte-erythroid (MkE) potential in the adult bone marrow Lineage(-)SCA-1(+)KIT(+) (LSK) compartment of multipotent stem and progenitor cells. The evidence for the existence of LSKCD34(+)FLT3(hi) lymphoid-primed MPPs (LMPPs) implicates that a strict separation into common myeloid and lymphoid pathways might not be the first lineage commitment step of hematopoietic stem cells (HSCs). Together with the evidence for existence of common myeloid and common lymphoid progenitors (CMPs and CLPs, respectively), the identification of LMPPs also suggests that at least the granulocyte-macrophage lineage can be generated through alternative pathways. However, the existence of LMPPs has recently been questioned, as there is evidence that at least a fraction of LSKCD34(+)FLT3(hi) cells sustains MkE potential. Thus, in more recent studies we have in more detail compared the molecular signature of adult LMPPs to populations of LSK cells enriched for cells with pluripotent HSC activity. Notably, we have found at the global as well as single-cell level that LMPPs when compared with pluripotent HSCs downregulate the transcriptional priming of genes typically expressed in cells of the MkE lineage, while upregulating early lymphoid genes. Although other studies have suggested that the earliest HSC commitment steps might differ in fetal and adult hematopoiesis, we have also obtained evidence suggesting that the LMPP is defined already during fetal development.

Månsson R, Hultquist A, Luc S, Yang L, Anderson K, Kharazi S, Al-Hashmi S, Liuba K, Thorén L, Adolfsson J et al. 2007. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity, 26 (4), pp. 407-419. | Show Abstract | Read more

Recent studies implicated the existence of adult lymphoid-primed multipotent progenitors (LMPPs) with little or no megakaryocyte-erythroid potential, questioning common myeloid and lymphoid progenitors as obligate intermediates in hematopoietic stem cell (HSC) lineage commitment. However, the existence of LMPPs remains contentious. Herein, global and single-cell analyses revealed a hierarchical organization of transcriptional lineage programs, with downregulation of megakaryocyte-erythroid genes from HSCs to LMPPs, sustained granulocyte-monocyte priming, and upregulation of common lymphoid (but not B and T cell-specific) genes. These biological and molecular relationships, implicating almost mutual exclusion of megakaryocyte-erythroid and lymphoid pathways, are established already in fetal hematopoiesis, as evidenced by existence of LMPPs in fetal liver. The identification of LMPPs and hierarchically ordered transcriptional activation and downregulation of distinct lineage programs is compatible with a model for HSC lineage commitment in which the probability for undergoing different lineage commitment fates changes gradually when progressing from HSCs to LMPPs.

Kirstetter P, Anderson K, Porse BT, Jacobsen SEW, Nerlov C. 2006. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol, 7 (10), pp. 1048-1056. | Show Abstract | Read more

Wnt signaling increases hematopoietic stem cell self-renewal and is activated in both myeloid and lymphoid malignancies, indicating involvement in both normal and malignant hematopoiesis. We report here activated canonical Wnt signaling in the hematopoietic system through conditional expression of a stable form of beta-catenin. This enforced expression led to hematopoietic failure associated with loss of myeloid lineage commitment at the granulocyte-macrophage progenitor stage; blocked erythrocyte differentiation; disruption of lymphoid development; and loss of repopulating stem cell activity. Loss of hematopoietic stem cell function was associated with decreased expression of Cdkn1a (encoding the cell cycle inhibitor p21(cdk)), Sfpi1, Hoxb4 and Bmi1 (encoding the transcription factors PU.1, HoxB4 and Bmi-1, respectively) and altered integrin expression in Lin(-)Sca-1(+)c-Kit(+) cells, whereas PU.1 was upregulated in erythroid progenitors. Constitutive activation of canonical Wnt signaling therefore causes multilineage differentiation block and compromised hematopoietic stem cell maintenance.

Kolossov E, Bostani T, Roell W, Breitbach M, Pillekamp F, Nygren JM, Sasse P, Rubenchik O, Fries JWU, Wenzel D et al. 2006. Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J Exp Med, 203 (10), pp. 2315-2327. | Show Abstract | Read more

Cellular cardiomyoplasty is an attractive option for the treatment of severe heart failure. It is, however, still unclear and controversial which is the most promising cell source. Therefore, we investigated and examined the fate and functional impact of bone marrow (BM) cells and embryonic stem cell (ES cell)-derived cardiomyocytes after transplantation into the infarcted mouse heart. This proved particularly challenging for the ES cells, as their enrichment into cardiomyocytes and their long-term engraftment and tumorigenicity are still poorly understood. We generated transgenic ES cells expressing puromycin resistance and enhanced green fluorescent protein cassettes under control of a cardiac-specific promoter. Puromycin selection resulted in a highly purified (>99%) cardiomyocyte population, and the yield of cardiomyocytes increased 6-10-fold because of induction of proliferation on purification. Long-term engraftment (4-5 months) was observed when co-transplanting selected ES cell-derived cardiomyocytes and fibroblasts into the injured heart of syngeneic mice, and no teratoma formation was found (n = 60). Although transplantation of ES cell-derived cardiomyocytes improved heart function, BM cells had no positive effects. Furthermore, no contribution of BM cells to cardiac, endothelial, or smooth muscle neogenesis was detected. Hence, our results demonstrate that ES-based cell therapy is a promising approach for the treatment of impaired myocardial function and provides better results than BM-derived cells.

Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJH, Bonde S, Kokaia Z, Jacobsen S-EW, Lindvall O. 2006. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci, 26 (38), pp. 9703-9712. | Show Abstract | Read more

Tumor necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine, acting through the TNF-R1 and TNF-R2 receptors. The two receptors have been proposed to mediate distinct TNF-alpha effects in the CNS, TNF-R1 contributing to neuronal damage and TNF-R2 being neuroprotective. Whether TNF-alpha and its receptors play any role for neurogenesis in the adult brain is unclear. Here we used mouse models with loss of TNF-R1 and TNF-R2 function to establish whether signaling through these receptors could influence hippocampal neurogenesis in vivo under basal conditions, as well as after status epilepticus (SE), which is associated with inflammation and elevated TNF-alpha levels. Notably, in the intact brain, the number of new, mature hippocampal neurons was elevated in TNF-R1(-/-) and TNF-R1/R2(-/-) mice, whereas no significant changes were detected in TNF-R2(-/-) mice. Also after SE, the TNF-R1(-/-) and TNF-R1/R2(-/-) mice produced more new neurons. In contrast, the TNF-R2(-/-) mice showed reduced SE-induced neurogenesis. Cell proliferation in the dentate subgranular zone was elevated in TNF-R1(-/-) and TNF-R1/R2(-/-) mice both under basal conditions and after SE. The TNF-R2(-/-) mice either showed no change or minor decrease of cell proliferation. TNF-R1 and TNF-R2 receptors were expressed by hippocampal progenitors, as assessed with reverse transcription-PCR on sorted or cultured cells and immunocytochemistry on cultures. Our data reveal differential actions of TNF-R1 and TNF-R2 signaling in adult hippocampal neurogenesis and identify for the first time TNF-R1 as a negative regulator of neural progenitor proliferation in both the intact and pathological brain.

Buza-Vidas N, Antonchuk J, Qian H, Månsson R, Luc S, Zandi S, Anderson K, Takaki S, Nygren JM, Jensen CT, Jacobsen SEW. 2006. Cytokines regulate postnatal hematopoietic stem cell expansion: opposing roles of thrombopoietin and LNK. Genes Dev, 20 (15), pp. 2018-2023. | Show Abstract | Read more

The role of cytokines as regulators of hematopoietic stem cell (HSC) expansion remains elusive. Herein, we identify thrombopoietin (THPO) and the cytokine signaling inhibitor LNK, as opposing physiological regulators of HSC expansion. Lnk(-/-) HSCs continue to expand postnatally, up to 24-fold above normal by 6 mo of age. Within the stem cell compartment, this expansion is highly selective for self-renewing long-term HSCs (LT-HSCs), which show enhanced THPO responsiveness. Lnk(-/-) HSC expansion is dependent on THPO, and 12-wk-old Lnk(-/-)Thpo(-/-) mice have 65-fold fewer LT-HSCs than Lnk(-/-) mice. Expansions of multiple myeloid, but not lymphoid, progenitors in Lnk(-/-) mice also proved THPO-dependent.

Roybon L, Ma Z, Asztely F, Fosum A, Jacobsen SEW, Brundin P, Li J-Y. 2006. Failure of transdifferentiation of adult hematopoietic stem cells into neurons. Stem Cells, 24 (6), pp. 1594-1604. | Show Abstract | Read more

Previous studies of bone marrow-derived stem cell transdifferentiation into neurons have not involved purified cell populations and determined their exact phenotype prior to differentiation. The present study investigates whether highly purified mouse adult hematopoietic stem cells (HSCs), characterized by lineage marker depletion and expression of the cell surface markers Sca1 and c-Kit (Lin(-) Sca1(+) c-Kit(+) [LSK]), can be stimulated to adopt a neuronal fate. When the HSC(LSK) cells were cultured in vitro in neuronal differentiation medium supplemented with retinoic acid, 50% of the cells expressed the neural progenitor marker nestin and no cells had become postmitotic. Electrophysiological recordings on neuron-like cells showed that these cells were incapable of generating action potentials. When the HSC(LSK) cells either were grown in vitro together with neural precursor cells or were transplanted into the striatum or cerebellum of wild-type mouse, they either differentiated into Iba1-immunopositive macrophage/microglia or died. In conclusion, we demonstrate that adult HSC(LSK) cells do not have the capacity to leave the hematopoietic lineage and differentiate into neurons.

Taneera J, Rosengren A, Renstrom E, Nygren JM, Serup P, Rorsman P, Jacobsen SEW. 2006. Failure of transplanted bone marrow cells to adopt a pancreatic beta-cell fate. Diabetes, 55 (2), pp. 290-296. | Show Abstract | Read more

Recent studies in normal mice have suggested that transplanted bone marrow cells can transdifferentiate into pancreatic beta-cells at relatively high efficiency. Herein, adopting the same and alternative approaches to deliver and fate map-transplanted bone marrow cells in the pancreas of normal as well as diabetic mice, we further investigated the potential of bone marrow transplantation as an alternative approach for beta-cell replacement. In contrast to previous studies, transplanted bone marrow cells expressing green fluorescence protein (GFP) under the control of the mouse insulin promoter failed to express GFP in the pancreas of normal as well as diabetic mice. Although bone marrow cells expressing GFP under the ubiquitously expressed beta-actin promoter efficiently engrafted the pancreas of normal and hyperglycemic mice, virtually all expressed CD45 and Mac-1/Gr-1, demonstrating that they adopt a hematopoietic rather than beta-cell fate, a finding further substantiated by the complete absence of GFP(+) cells expressing insulin and the beta-cell transcription factors pancreatic duodenal homeobox factor-1 and homeodomain protein. Thus, transplanted bone marrow cells demonstrated little, if any, capacity to adopt a beta-cell fate.

Porse BT, Bryder D, Theilgaard-Mönch K, Hasemann MS, Anderson K, Damgaard I, Jacobsen SEW, Nerlov C. 2005. Loss of C/EBP alpha cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage. J Exp Med, 202 (1), pp. 85-96. | Show Abstract | Read more

CCAAT/enhancer binding protein (C/EBP)alpha is a myeloid-specific transcription factor that couples lineage commitment to terminal differentiation and cell cycle arrest, and is found mutated in 9% of patients who have acute myeloid leukemia (AML). We previously showed that mutations which dissociate the ability of C/EBP alpha to block cell cycle progression through E2F inhibition from its function as a transcriptional activator impair the in vivo development of the neutrophil granulocyte and adipose lineages. We now show that such mutations increase the capacity of bone marrow (BM) myeloid progenitors to proliferate, and predispose mice to a granulocytic myeloproliferative disorder and transformation of the myeloid compartment of the BM. Both of these phenotypes were transplantable into lethally irradiated recipients. BM transformation was characterized by a block in granulocyte differentiation, accumulation of myeloblasts and promyelocytes, and expansion of myeloid progenitor populations--all characteristics of AML. Circulating myeloblasts and hepatic leukocyte infiltration were observed, but thrombocytopenia, anemia, and elevated leukocyte count--normally associated with AML-were absent. These results show that disrupting the cell cycle regulatory function of C/EBP alpha is sufficient to initiate AML-like transformation of the granulocytic lineage, but only partially the peripheral pathology of AML.

Castor A, Nilsson L, Astrand-Grundström I, Buitenhuis M, Ramirez C, Anderson K, Strömbeck B, Garwicz S, Békássy AN, Schmiegelow K et al. 2005. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med, 11 (6), pp. 630-637. | Show Abstract | Read more

The cellular targets of primary mutations and malignant transformation remain elusive in most cancers. Here, we show that clinically and genetically different subtypes of acute lymphoblastic leukemia (ALL) originate and transform at distinct stages of hematopoietic development. Primary ETV6-RUNX1 (also known as TEL-AML1) fusions and subsequent leukemic transformations were targeted to committed B-cell progenitors. Major breakpoint BCR-ABL1 fusions (encoding P210 BCR-ABL1) originated in hematopoietic stem cells (HSCs), whereas minor BCR-ABL1 fusions (encoding P190 BCR-ABL1) had a B-cell progenitor origin, suggesting that P190 and P210 BCR-ABL1 ALLs represent largely distinct tumor biological and clinical entities. The transformed leukemia-initiating stem cells in both P190 and P210 BCR-ABL1 ALLs had, as in ETV6-RUNX1 ALLs, a committed B progenitor phenotype. In all patients, normal and leukemic repopulating stem cells could successfully be separated prospectively, and notably, the size of the normal HSC compartment in ETV6-RUNX1 and P190 BCR-ABL1 ALLs was found to be unaffected by the expansive leukemic stem cell population.

Buitenhuis M, van Deutekom HWM, Verhagen LP, Castor A, Jacobsen SEW, Lammers J-WJ, Koenderman L, Coffer PJ. 2005. Differential regulation of granulopoiesis by the basic helix-loop-helix transcriptional inhibitors Id1 and Id2. Blood, 105 (11), pp. 4272-4281. | Show Abstract | Read more

Inhibitor of DNA binding (Id) proteins function as inhibitors of members of the basic helix-loop-helix family of transcription factors and have been demonstrated to play an important role in regulating lymphopoiesis. However, the role of these proteins in regulation of myelopoiesis is currently unclear. In this study, we have investigated the role of Id1 and Id2 in the regulation of granulopoiesis. Id1 expression was initially up-regulated during early granulopoiesis, which was then followed by a decrease in expression during final maturation. In contrast, Id2 expression was up-regulated in terminally differentiated granulocytes. In order to determine whether Id expression plays a critical role in regulating granulopoiesis, Id1 and Id2 were ectopically expressed in CD34(+) cells by retroviral transduction. Our experiments demonstrate that constitutive expression of Id1 inhibits eosinophil development, whereas in contrast neutrophil differentiation was modestly enhanced. Constitutive Id2 expression accelerates final maturation of both eosinophils and neutrophils, whereas inhibition of Id2 expression blocks differentiation of both lineages. Transplantation of beta2-microglobulin(-/-) nonobese diabetic severe combined immunodeficient (NOD/SCID) mice with CD34(+) cells ectopically expressing Id1 resulted in enhanced neutrophil development, whereas ectopic expression of Id2 induced both eosinophil and neutrophil development. These data demonstrate that both Id1 and Id2 play a critical, although differential role in granulopoiesis.

Adolfsson J, Månsson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, Borge O-J, Thoren LAM et al. 2005. Identification of Flt3+ Lympho-Myeloid Stem Cells Lacking Erythro-Megakaryocytic Potential Cell, 121 (2), pp. 295-306. | Read more

Jacobsen SEW. 2005. Defining 'stemness': Notch and Wnt join forces? Nat Immunol, 6 (3), pp. 234-236. | Read more

Nilsson T, Nilsson L, Lenhoff S, Rylander L, Astrand-Grundström I, Strömbeck B, Höglund M, Turesson I, Westin J, Mitelman F et al. 2004. MDS/AML-associated cytogenetic abnormalities in multiple myeloma and monoclonal gammopathy of undetermined significance: evidence for frequent de novo occurrence and multipotent stem cell involvement of del(20q). Genes Chromosomes Cancer, 41 (3), pp. 223-231. | Show Abstract | Read more

Multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) are characterized cytogenetically by 14q32 rearrangements, -13/13q-, and various trisomies. Occasionally, karyotypic patterns characteristic of myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML) occur in MM, often signifying therapy-related (t)-MDS/t-AML. Comparison of cytogenetic features in all published MMs (n = 993) and t-MDS/t-AML post-MM (n = 117) revealed significant differences in complexity and ploidy levels and in most genomic changes. Thus, these features often can be used to distinguish between MM and t-MDS/t-AML. Rarely, myeloid-associated aberrations are detected in MM without any signs of MDS/AML. To characterize such abnormalities in MM/MGUS, we ascertained all 122 MM and 26 MGUS/smoldering MM (SMM) cases analyzed in our department. Sixty-six (54%) MMs and 8 (31%) MGUS/SMMs were karyotypically abnormal, of which 6 (9%) MMs and 3 (38%) MGUS/SMMs displayed myeloid abnormalities, that is, +8 (1 case) and 20q- (8 cases) as the sole anomalies, without any evidence of MDS/AML. One patient developed AML, whereas no MDS/AML occurred in the remaining 8 patients. In one MGUS with del(20q), fluorescence in situ hybridization analyses revealed its presence in CD34+CD38- (hematopoietic stem cells), CD34+CD38+ (progenitors), CD19+ (B cells), and CD15+ (myeloid cells). The present data indicate that 20q- occurs in 10% of karyotypically abnormal MM/MGUS cases and that it might arise at a multipotent progenitor/stem cell level.

Wang L, Jacobsen SEW, Bengtsson A, Erlinge D. 2004. P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol, 5 pp. 16. | Show Abstract | Read more

BACKGROUND: Extracellular nucleotides (ATP, ADP, UTP and UDP) exert a wide range of biological effects in blood cells mediated by multiple ionotropic P2X receptors and G protein-coupled P2Y receptors. Although pharmacological experiments have suggested the presence of several P2 receptor subtypes on monocytes and lymphocytes, some results are contradictory. Few physiological functions have been firmly established to a specific receptor subtype, partly because of a lack of truly selective agonists and antagonists. This stimulated us to investigate the expression of P2X and P2Y receptors in human lymphocytes and monocytes with a newly established quantitative mRNA assay for P2 receptors. In addition, we describe for the first time the expression of P2 receptors in CD34+ stem and progenitor cells implicating a potential role of P2 receptors in hematopoietic lineage and progenitor/stem cell function. RESULTS: Using a quantitative mRNA assay, we assessed the hypothesis that there are specific P2 receptor profiles in inflammatory cells. The P2X4 receptor had the highest expression in lymphocytes and monocytes. Among the P2Y receptors, P2Y12 and P2Y2 had highest expression in lymphocytes, while the P2Y2 and P2Y13 had highest expression in monocytes. Several P2 receptors were expressed (P2Y2, P2Y1, P2Y12, P2Y13, P2Y11, P2X1, P2X4) in CD34+ stem and progenitor cells. CONCLUSIONS: The most interesting findings were the high mRNA expression of P2Y12 receptors in lymphocytes potentially explaining the anti-inflammatory effects of clopidogrel, P2Y13 receptors in monocytes and a previously unrecognised expression of P2X4 in lymphocytes and monocytes. In addition, for the first time P2 receptor mRNA expression patterns was studied in CD34+ stem and progenitor cells. Several P2 receptors were expressed (P2Y2, P2Y1, P2Y12, P2Y13, P2Y11, P2X1, P2X4), indicating a role in differentiation and proliferation. Thus, it is possible that specific antibodies to P2 receptors could be used to identify progenitors for monocytes, lymphocytes and megakaryocytes.

Nygren JM, Jovinge S, Breitbach M, Säwén P, Röll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SEW. 2004. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med, 10 (5), pp. 494-501. | Show Abstract | Read more

Recent studies have suggested that bone marrow cells might possess a much broader differentiation potential than previously appreciated. In most cases, the reported efficiency of such plasticity has been rather low and, at least in some instances, is a consequence of cell fusion. After myocardial infarction, however, bone marrow cells have been suggested to extensively regenerate cardiomyocytes through transdifferentiation. Although bone marrow-derived cells are already being used in clinical trials, the exact identity, longevity and fate of these cells in infarcted myocardium have yet to be investigated in detail. Here we use various approaches to induce acute myocardial injury and deliver transgenically marked bone marrow cells to the injured myocardium. We show that unfractionated bone marrow cells and a purified population of hematopoietic stem and progenitor cells efficiently engraft within the infarcted myocardium. Engraftment was transient, however, and hematopoietic in nature. In contrast, bone marrow-derived cardiomyocytes were observed outside the infarcted myocardium at a low frequency and were derived exclusively through cell fusion.

Sasaki Y, Jensen CT, Karlsson S, Jacobsen SEW. 2004. Enforced expression of cyclin D2 enhances the proliferative potential of myeloid progenitors, accelerates in vivo myeloid reconstitution, and promotes rescue of mice from lethal myeloablation. Blood, 104 (4), pp. 986-992. | Show Abstract | Read more

Severe and prolonged cytopenias represent a considerable problem in clinical stem cell transplantations. Cytokine-induced ex vivo expansion of hematopoietic stem and progenitor cells has been intensively explored as a means of accelerating hematopoietic recovery following transplantation but have so far had limited success. Herein, overexpression of D-type cyclins, promoting G0/G1 to S transition, was investigated as an alternative approach to accelerate myeloid reconstitution following stem cell transplantation. With the use of retroviral-mediated gene transfer, cyclin D2 was overexpressed in murine bone marrow progenitor cells, which at limited doses showed enhanced ability to rescue lethally ablated recipients. Competitive repopulation studies demonstrated that overexpression of cyclin D2 accelerated myeloid reconstitution following transplantation, and, in agreement with this, cyclin D2-transduced myeloid progenitors showed an enhanced proliferative response to cytokines in vitro. Furthermore, cyclin D2-overexpressing myeloid progenitors and their progeny were sustained for longer periods in culture, resulting in enhanced and prolonged granulocyte production in vitro. Thus, overexpression of cyclin D2 confers myeloid progenitors with an enhanced proliferative and granulocyte potential, facilitating rapid myeloid engraftment and rescue of lethally ablated recipients.

Sitnicka E, Buza-Vidas N, Larsson S, Nygren JM, Liuba K, Jacobsen SEW. 2003. Human CD34+ hematopoietic stem cells capable of multilineage engrafting NOD/SCID mice express flt3: distinct flt3 and c-kit expression and response patterns on mouse and candidate human hematopoietic stem cells. Blood, 102 (3), pp. 881-886. | Show Abstract | Read more

The cytokine tyrosine kinase receptors c-kit and flt3 are expressed and function in early mouse and human hematopoiesis. Through its ability to promote ex vivo expansion and oncoretroviral transduction of primitive human hematopoietic progenitors, the flt3 ligand (FL) has emerged as a key stimulator of candidate human hematopoietic stem cells (HSCs). However, recent studies in the mouse suggest that though it is present on short-term repopulating cells, flt3 is not expressed on bone marrow long-term reconstituting HSCs, the ultimate target for the development of cell replacement and gene therapy. Herein we demonstrate that though only a fraction of human adult bone marrow and cord blood CD34+long-term culture-initiating cells (LTC-ICs) express flt3, most cord blood lymphomyeloid HSCs capable of in vivo reconstituting nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice are flt3+. The striking difference in flt3 and c-kit expression on mouse and candidate human HSCs translated into a corresponding difference in flt3 and c-kit function because FL was more efficient than SCF at supporting the survival of candidate human HSCs. In contrast, SCF is far superior to FL as a viability factor for mouse HSCs. Thus, the present data provide compelling evidence for a contrasting expression and response pattern of flt3 and c-kit on mouse and human HSCs.

Gu Y-C, Kortesmaa J, Tryggvason K, Persson J, Ekblom P, Jacobsen S-E, Ekblom M. 2003. Laminin isoform-specific promotion of adhesion and migration of human bone marrow progenitor cells. Blood, 101 (3), pp. 877-885. | Show Abstract | Read more

Laminins are alphabetagamma heterotrimeric extracellular proteins that regulate cellular functions by adhesion to integrin and nonintegrin receptors. Laminins containing alpha4 and alpha5 chains are expressed in bone marrow, but their interactions with hematopoietic progenitors are unknown. We studied human bone marrow cell adhesion to laminin-10/11 (alpha5beta1gamma1/alpha5beta2gamma1), laminin-8 (alpha4beta1gamma1), laminin-1 (alpha1beta1gamma1), and fibronectin. About 35% to 40% of CD34(+) and CD34(+)CD38(-) stem and progenitor cells adhered to laminin-10/11, and 45% to 50% adhered to fibronectin, whereas they adhered less to laminin-8 and laminin-1. Adhesion of CD34(+)CD38(-) cells to laminin-10/11 was maximal without integrin activation, whereas adhesion to other proteins was dependent on protein kinase C activation by 12-tetradecanoyl phorbol-13-acetate (TPA). Fluorescence-activated cell-sorting (FACS) analysis showed expression of integrin alpha6 chain on most CD34(+) and CD34(+)CD38(-) cells. Integrin alpha6 and beta1 chains were involved in binding of both cell fractions to laminin-10/11 and laminin-8. Laminin-10/11 was highly adhesive to lineage-committed myelomonocytic and erythroid progenitor cells and most lymphoid and myeloid cell lines studied, whereas laminin-8 was less adhesive. In functional assays, both laminin-8 and laminin-10/11 facilitated stromal-derived factor-1alpha (SDF-1alpha)-stimulated transmigration of CD34(+) cells, by an integrin alpha6 receptor-mediated mechanism. In conclusion, we demonstrate laminin isoform-specific adhesive interactions with human bone marrow stem, progenitor, and more differentiated cells. The cell-adhesive laminins affected migration of hematopoietic progenitors, suggesting a physiologic role for laminins during hematopoiesis.

Björgvinsdóttir H, Bryder D, Sitnicka E, Ramsfjell V, De Jong I, Olsson K, Rusterholz C, Karlsson S, Jacobsen SEW. 2002. Efficient oncoretroviral transduction of extended long-term culture-initiating cells and NOD/SCID repopulating cells: enhanced reconstitution with gene-marked cells through an ex vivo expansion approach. Hum Gene Ther, 13 (9), pp. 1061-1073. | Show Abstract | Read more

Recent developments of surrogate assays for human hematopoietic stem cells (HSC) have facilitated efforts at improving HSC gene transfer efficiency. Through the use of xenograft transplantation models, such as nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, successful oncoretroviral gene transfer to transplantable hematopoietic cells has been achieved. However, because of the low frequency and/or homing efficiency of SCID repopulating cells (SRC) in bone marrow (BM), studies have primarily focused on cord blood (CB). The recently developed extended (> 60 days) long-term culture-initiating cell (ELTC-IC) assay detects an infrequent and highly quiescent candidate stem cell population in BM as well as CB of the CD34(+)CD38(-) phenotype. Although these characteristics suggest that ELTC-IC and SRC might be closely related, attempts to oncoretrovirally transduce ELTC-IC have been unsuccessful. Here, recently developed conditions (high concentrations of SCF + FL + Tpo in serum-free medium) supporting expansion of BM CD34(+)CD38(-) 12 week ELTC-IC promoted efficient oncoretroviral transduction of BM and CB ELTC-IC. Although SRC can be transduced with oncoretroviral vectors, this is frequently associated with loss of reconstituting activity, posing a problem for development of clinical HSC gene therapy. However, previous attempts at expanding transduced HSC posttransduction resulted in compromised rather than improved gene marking. Utilizing conditions promoting cell divisions and transduction of ELTC-IC we show that although 5 days of ex vivo culture is sufficient to obtain maximum gene transfer efficiency to SRC, extension of the expansion period to 12 days significantly enhances multilineage reconstitution activity of transduced SRC, supporting the feasibility of improving gene marking through ex vivo expansion.

Adolfsson J, Borge OJ, Bryder D, Theilgaard-Mönch K, Astrand-Grundström I, Sitnicka E, Sasaki Y, Jacobsen SE. 2001. Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity, 15 (4), pp. 659-669. | Show Abstract | Read more

Flt3 has emerged as a potential regulator of hematopoietic stem cells (HSC). Sixty percent of cells in the mouse marrow Lin(-)Sca1(+)c-kit(+) HSC pool expressed flt3. Although single cell cloning showed comparable high proliferative, myeloid, B, and T cell potentials of Lin(-)Sca1(+)c-kit(+)flt3(+) and Lin(-)Sca1(+)c-kit(+)flt3(-) cells, only Lin(-)Sca1(+)c-kit(+)flt3(-) cells supported sustained multilineage reconstitution. In striking contrast, Lin(-)Sca1(+)c-kit(+)flt3(+) cells rapidly and efficiently reconstituted B and T lymphopoiesis, whereas myeloid reconstitution was exclusively short term. Unlike c-kit, activation of flt3 failed to support survival of HSC, whereas only flt3 mediated survival of Lin(-)Sca1(+)c-kit(+)flt3(+) reconstituting cells. Phenotypic and functional analysis support that Lin(-)Sca1(+)c-kit(+)flt3(+) cells are progenitors for the common lymphoid progenitor. Thus, upregulation of flt3 expression on Lin(-)Sca1(+)c-kit(+) HSC cells is accompanied by loss of self-renewal capacity but sustained lymphoid-restricted reconstitution potential.

Dybedal I, Bryder D, Fossum A, Rusten LS, Jacobsen SE. 2001. Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood, 98 (6), pp. 1782-1791. | Show Abstract | Read more

Hematopoietic stem cell (HSC) fate decisions between self-renewal and commitment toward differentiation are tightly regulated in vivo. Recent developments in HSC culture and improvements of human HSC assays have facilitated studies of these processes in vitro. Through such studies stimulatory cytokines critically involved in HSC maintenance in vivo have been demonstrated to also promote HSC self-renewing divisions in vitro. Evidence for negative regulators of HSC self-renewal is, however, lacking. Tumor necrosis factor (TNF), if overexpressed, has been implicated to mediate bone marrow suppression. However, whether and how TNF might affect the function of HSC with a combined myeloid and lymphoid reconstitution potential has not been investigated. In the present studies in vitro conditions recently demonstrated to promote HSC self-renewing divisions in vitro were used to study the effect of TNF on human HSCs capable of reconstituting myelopoiesis and lymphopoiesis in nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice. Although all cord blood and adult bone marrow CD34(+)CD38(-) cells were capable of undergoing cell divisions in the presence of TNF, cycling HSCs exposed to TNF in vitro and in vivo were severely compromised in their ability to reconstitute NOD-SCID mice and long-term cultures. The negative effect of TNF was not dependent on the Fas pathway, and a similar effect could be observed using a mutant TNF exclusively targeting the p55 TNF receptor. TNF did not appear to enhance apoptosis or affect cell-cycle distribution of cultured progenitors, but rather promoted myeloid differentiation. Thus, TNF might regulate HSC fate by promoting their differentiation rather than self-renewal.

Mikkola H, Woods NB, Sjögren M, Helgadottir H, Hamaguchi I, Jacobsen SE, Trono D, Karlsson S. 2000. Lentivirus gene transfer in murine hematopoietic progenitor cells is compromised by a delay in proviral integration and results in transduction mosaicism and heterogeneous gene expression in progeny cells. J Virol, 74 (24), pp. 11911-11918. | Show Abstract | Read more

Human immunodeficiency virus type 1-based lentivirus vectors containing the green fluorescent protein (GFP) gene were used to transduce murine Lin(-) c-kit(+) Sca1(+) primitive hematopoietic progenitor cells. Following transduction, the cells were plated into hematopoietic progenitor cell assays in methylcellulose and the colonies were scored for GFP positivity. After incubation for 20 h, lentivirus vectors transduced 27.3% +/- 6.7% of the colonies derived from unstimulated target cells, but transduction was more efficient when the cells were supported with stem cell factor (SCF) alone (42. 0% +/- 5.5%) or SCF, interleukin-3 (IL-3), and IL-6 (53.3 +/- 1.8%) during transduction. The, vesicular stomatitis virus glycoprotein-pseudotyped MGIN oncoretrovirus control vector required IL-3, IL-6, and SCF for significant transduction (39.3 +/- 9.4%). Interestingly, only a portion of the progeny cells within the lentivirus-transduced methylcellulose colonies expressed GFP, in contrast to the homogeneous expression in oncoretrovirus-transduced colonies. Secondary plating of the primary GFP(+) lentivirus vector-transduced colonies revealed vector PCR(+) GFP(+) (42%), vector PCR(-) GFP(-) (46%), and vector PCR(+) GFP(-) (13%) secondary colonies, indicating true genetic mosaicism with respect to the viral genome in the progeny cells. The degree of vector mosaicism in individual colonies could be reduced by extending the culture time after transduction and before plating into the clonal progenitor cell assay, indicating a delay in the lentiviral integration process. Furthermore, supplementation with exogenous deoxynucleoside triphosphates during transduction decreased mosaicism within the colonies. Although cytokine stimulation during transduction correlates with higher transduction efficiency, rapid cell division after transduction may result in loss of the viral genome in the progeny cells. Therefore, optimal transduction may require activation without promoting intense cell proliferation prior to vector integration.

Bryder D, Jacobsen SE. 2000. Interleukin-3 supports expansion of long-term multilineage repopulating activity after multiple stem cell divisions in vitro. Blood, 96 (5), pp. 1748-1755. | Show Abstract

Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin(-)Sca-1(+)kit(+) bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3. (Blood. 2000;96:1748-1755)

Fan X, Brun A, Segrén S, Jacobsen SE, Karlsson S. 2000. Efficient adenoviral vector transduction of human hematopoietic SCID-repopulating and long-term culture-initiating cells. Hum Gene Ther, 11 (9), pp. 1313-1327. | Show Abstract | Read more

This article presents our studies on the adenoviral transduction efficiency, level of transgene expression, cell cycle status, and multilineage reconstitution ability of human CD34+ hematopoietic cells transduced under proliferating and survival growth conditions. Bone marrow and umbilical cord blood CD34+ cells were cultured in serum-free medium under survival conditions with thrombopoietin (Tpo) alone, or under proliferating conditions with Tpo, c-Kit ligand (KL), and Flt3 ligand (FL). Adenoviral vectors carrying the enhanced green fluorescent protein (EGFP) gene under the control of the PGK-1 promoter were used to transduce CD34+ cells. Approximately 10% of CD34+ cells were EGFP+ under both culture conditions. In contrast, up to 50% of CD34+CD38- cells were EGFP+, whereas a maximum of 8% of CD34+CD38(high) cells were EGFP+ (p < 0.001). Both colony-forming unit cells (CFU-C) and 5-week long-term culture-initiating cells (LTC-ICs) were efficiently transduced. Under survival conditions, a substantial fraction of transduced CD34+ cells remained quiescent. The nondividing CD34+EGFP+ cells contained LTC-ICs capable of reconstituting longterm culture for as long as 10 weeks. CD34+EGFP+ cells also retained the ability to engraft and multilineage-reconstitute NOD/SCID mice. These observations demonstrate that primitive human hematopoietic progenitor cells can be efficiently transduced by adenoviral vectors.

Lyman SD, Jacobsen SE. 1998. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood, 91 (4), pp. 1101-1134.

Dybedal I, Guan F, Borge OJ, Veiby OP, Ramsfjell V, Nagata S, Jacobsen SE. 1997. Transforming growth factor-beta1 abrogates Fas-induced growth suppression and apoptosis of murine bone marrow progenitor cells. Blood, 90 (9), pp. 3395-3403. | Show Abstract

Fas, a member of the tumor necrosis factor (TNF ) receptor superfamily is a critical downregulator of cellular immune responses. Proinflammatory cytokines like interferon-gamma (IFN-gamma) and TNF-alpha can induce Fas expression and render hematopoietic progenitor cells susceptible to Fas-induced growth suppression and apoptosis. Transforming growth factor-beta1 (TGF-beta1 ) is an essential anti-inflammatory cytokine, thought to play a key role in regulating hematopoiesis. In the present studies we investigated whether TGF-beta1 might regulate growth suppression and apoptosis of murine hematopoietic progenitor cells signaled through Fas. In the presence of TNF, activation of Fas almost completely blocked clonogenic growth of lineage-depleted (Lin-) bone marrow (BM) progenitor cells in response to granulocyte-macrophage colony-stimulating factor (GM-CSF ), CSF-1, or a combination of multiple cytokines. Whereas TGF-beta1 alone had no effect or stimulated growth in response to these cytokines, it abrogated Fas-induced growth suppression. Single-cell studies and delayed addition of TGF-beta1 showed that the ability of TGF-beta1 to inhibit Fas-induced growth suppression was directly mediated on the progenitor cells and not indirect through potentially contaminating accessory cells. Furthermore, TGF-beta1 blocked Fas-induced apoptosis of Lin- BM cells, but did not affect Fas-induced apoptosis of thymocytes. TGF-beta1 also downregulated the expression of Fas on Lin- BM cells. Thus, TGF-beta1 potently and directly inhibits activation-dependent and Fas-mediated growth suppression and apoptosis of murine BM progenitor cells, an effect that appears to be distinct from its ability to induce progenitor cell-cycle arrest. Consequently, TGF-beta1 might act to protect hematopoietic progenitor cells from enhanced Fas expression and function associated with proinflammatory responses.

Cui L, Ramsfjell V, Borge OJ, Veiby OP, Lok S, Jacobsen SE. 1997. Thrombopoietin promotes adhesion of primitive human hemopoietic cells to fibronectin and vascular cell adhesion molecule-1: role of activation of very late antigen (VLA)-4 and VLA-5. J Immunol, 159 (4), pp. 1961-1969. | Show Abstract

Thrombopoietin (Tpo), the ligand for c-mpl and a principal regulator of megakaryocytopoiesis and platelet production, has been demonstrated to stimulate the growth and differentiation of megakaryocyte as well as multipotent hemopoietic progenitor cells. In the present study we demonstrate that Tpo can stimulate the adhesion of the Mo7e progenitor cell line to fibronectin (Fn) as well as vascular cell adhesion molecule-1 through activation of very late antigen (VLA)-4 and VLA-5, adhesion molecules previously demonstrated to be involved in regulation of steady state hemopoiesis. Tpo-induced adhesion was concentration dependent, reached a maximum following 30 min, and appeared to be dependent on adenylate cyclase, and tyrosine kinase activity. Furthermore, second messenger inhibitors implicated essential and complimentary roles of phosphatidylinositol-3-kinase and protein kinase C in mediating Tpo-induced adhesion. The ability of Tpo to promote adhesion to fibronectin was comparable to that of IL-3, but less than that of stem cell factor. Unlike the ability of these cytokines to synergistically enhance growth of Mo7e as well as normal progenitor cells, no synergy was observed with regard to their ability to enhance adhesion. Finally, Tpo stimulated adhesion of primitive (CD34+ CD38-) human bone marrow cells to fibronectin, predominantly through activation of VLA-5, whereas no such effect could be observed on CD34+ CD38+ bone marrow cells. Thus, Tpo might play an important role in early hemopoiesis, at least in part through its ability to promote adhesion through activation of adhesion molecules on hemopoietic progenitor cells.

Jacobsen FW, Veiby OP, Stokke T, Jacobsen SE. 1996. TNF-alpha bidirectionally modulates the viability of primitive murine hematopoietic progenitor cells in vitro. J Immunol, 157 (3), pp. 1193-1199. | Show Abstract

It is well established that TNF-alpha can induce apoptosis in many normal and transformed cell types. The effects of TNF-alpha on cytokine-induced proliferation and differentiation of normal hematopoietic progenitors have been characterized extensively, whereas little is known about how TNF-alpha can affect their viability. The present studies suggest, based on experiments using delayed addition of growth-promoting cytokines as well direct viability assays, that TNF-alpha bidirectionally affects the survival of individually cultured primitive Lin- Sca-1+ hematopoietic progenitors, in that stem cell factor (SCF)-, granulocyte-CSF-, IL-6-, and IL-11-induced survival is potently counteracted by TNF-alpha (42-86%), whereas TNF-alpha synergistically enhances IL-1alpha-induced survival up to threefold. The bidirectional effects of TNF-alpha on hematopoietic growth factor-induced survival of hematopoietic progenitors were reflected in that TNF-alpha enhanced apoptosis of Lin- Sca-1+ cells when combined with SCF, whereas TNF-alpha synergistically suppressed apoptosis in response to IL-1alpha.

Jacobsen SE, Borge OJ, Ramsfjell V, Cui L, Cardier JE, Veiby OP, Murphy MJ, Lok S. 1996. Thrombopoietin, a direct stimulator of viability and multilineage growth of primitive bone marrow progenitor cells. Stem Cells, 14 Suppl 1 (S1), pp. 173-180. | Show Abstract | Read more

Thrombopoietin (TPO), the ligand for c-mpl, has recently been demonstrated to be the primary regulator of megakaryocytopoiesis and platelet production. In addition, several studies have demonstrated that c-mpl is expressed on hematopoietic cell populations highly enriched in primitive progenitor cells. Here we summarize and discuss recent studies from our laboratory, as well as others, demonstrating that TPO has effects on primitive hematopoietic progenitor cells. When acting alone, TPO stimulates little or no growth, but promotes viability and suppresses apoptosis of murine multipotent (Lin- Sca-1+) bone marrow progenitor cells in vitro. In addition, TPO directly and potently synergizes with other early acting cytokines (kit ligand, flt3 ligand and interleukin 3) to promote multilineage growth of the same progenitor cell population. Although it remains to be established whether TPO also acts on the long-term reconstituting pluripotent stem cells, these studies combined with progenitor cell studies in c-mpl-deficient mice, suggest that TPO, in addition to its key role in platelet production, might also have an important impact on early hematopoiesis.

Dybedal I, Larsen S, Jacobsen SE. 1995. IL-12 directly enhances in vitro murine erythropoiesis in combination with IL-4 and stem cell factor. J Immunol, 154 (10), pp. 4950-4955. | Show Abstract

It has been demonstrated recently that in vivo administration of murine IL-12 to mice enhances the activity of cytotoxic NK cells and lymphocyte-activated killer cells, and that it has antitumor and antimetastatic activity. However, one side effect observed in response to systemic IL-12 treatment is anemia. In the present study, we examined for the first time the ability of IL-12 to affect directly the growth of murine erythroid progenitor cells in vitro. Whereas IL-12 alone or in combination with Erythropoietin (Epo) showed no stimulatory effect on erythroid progenitors, IL-12 potently enhanced the number of erythroid burst-forming unit (BFU-E) colonies formed in response to Epo+IL-4 by 63% and Epo+stem cell factor by 80%. The stimulatory effect of IL-12 occurred in a concentration-dependent fashion, with maximum enhancing effect observed at 50 ng/ml. Furthermore, single cell experiments suggested that the stimulatory effect of IL-12 on erythroid colony formation was directly mediated. Thus, IL-12 can directly enhance murine erythropoiesis in vitro, suggesting that IL-12-induced anemia is mediated through an indirect mechanism.

Grzegorzewski KJ, Komschlies KL, Jacobsen SE, Ruscetti FW, Keller JR, Wiltrout RH. 1995. Mobilization of long-term reconstituting hematopoietic stem cells in mice by recombinant human interleukin 7. J Exp Med, 181 (1), pp. 369-374. | Show Abstract | Read more

Administration of recombinant human interleukin 7 (rh)IL-7 to mice has been reported by our group to increase the exportation of myeloid progenitors (colony-forming unit [CFU]-c and CFU-granulocyte erythroid megakarocyte macrophage) from the bone marrow to peripheral organs (blood, spleen[s], and liver). We now report that IL-7 also stimulates a sixfold increase in the number of more primitive CFU-S day 8 (CFU-S8) and day 12 (CFU-S12) in the peripheral blood leukocytes (PBL) of mice treated with rhIL-7 for 7 d. Moreover, > 90% of lethally irradiated recipient mice that received PBL from rhIL-7-treated donor mice have survived for > 6 mo whereas none of the recipient mice that received an equal number of PBL from diluent-treated donors survived. Flow cytometry analysis at 3 and 6 mo after transplantation revealed complete trilineage (T, B, and myelomonocytic cell) repopulation of bone marrow, thymus, and spleen by blood-borne stem/progenitor cells obtained from rhIL-7-treated donor mice. Thus, IL-7 may prove valuable for mobilizing pluripotent stem cells with long-term repopulating activity from the bone marrow to the peripheral blood for the purpose of gene modification and/or autologous or allogeneic stem cell transplantation.

Jacobsen SE, Jacobsen FW, Fahlman C, Rusten LS. 1994. TNF-alpha, the great imitator: role of p55 and p75 TNF receptors in hematopoiesis. Stem Cells, 12 Suppl 1 pp. 111-126. | Show Abstract

The clinical application of tumor necrosis factor-alpha (TNF-alpha) has so far been limited due to the severe adverse effects associated with its systemic use. Recently, two distinct TNF receptors with molecular weights of 55 kDa (TNFR55) and 75 kDa (TNFR75) have been cloned and characterized. The subsequent development of TNF-alpha mutants with selective activity on either TNFR55 or TNFR75 suggest that such mutants might maintain the therapeutic (anti-tumor) potential of wild type TNF-alpha, but exhibit reduced toxicity (proinflammatory effects). In the present article we discuss previous studies on the effects of TNF-alpha in in vitro and in vivo hematopoiesis. In addition, we summarize more recent data from our laboratory as well as others, elucidating the role of TNF-alpha as a direct bifunctional regulator of in vitro hematopoiesis. Specifically, TNF-alpha is a potent inhibitor of the clonal growth of primitive and committed murine and human bone marrow progenitors in combination with multiple cytokines, including granulocyte colony-stimulating factor (G-CSF), CSF-1, erythropoietin (Epo), stem cell factor (SCF), and flt3 ligand (FL). In contrast, TNF-alpha at low concentrations can synergistically and directly enhance the clonal growth of primitive and more mature human CD34+ bone marrow progenitors when combined with GM-CSF or interleukin (IL)-3. Thus, a critical determinant of whether TNF-alpha elicits a stimulatory or inhibitory effect on the in vitro growth of hematopoietic progenitors appears to be the specific growth factors with which it interacts, rather than the maturity of the targeted progenitor. Furthermore, we describe the involvement of the two TNF receptors in signaling in vitro hematopoietic effects of TNF-alpha. Whereas TNFR55 is involved in most observed responses to TNF-alpha, signaling of TNFR75 appears to be restricted to inhibitory effects on primitive progenitors. Finally, we discuss the complexity of direct and indirect actions of TNF-alpha in in vivo hematopoiesis, and the potential clinical applications of TNF-alpha or TNF mutants.

Jacobsen SE, Veiby OP, Smeland EB. 1993. Cytotoxic lymphocyte maturation factor (interleukin 12) is a synergistic growth factor for hematopoietic stem cells. J Exp Med, 178 (2), pp. 413-418. | Show Abstract | Read more

The recently cloned cytotoxic lymphocyte maturation factor (interleukin 12 [IL-12]) has been described as a growth factor for mature lymphocytes. The present study investigated whether purified recombinant murine IL-12 (rMuIL-12) also could affect the proliferation of primitive bone marrow progenitor cells. Using a population of Lin-Sca-1+ murine bone marrow stem cells, we now demonstrate that IL-12 is a potent synergistic factor for primitive hematopoietic stem cells. The synergy of IL-12 was observed in single-cell cloning assays, demonstrating that its effects are directly mediated. Specifically, IL-12 enhanced stem cell factor-induced myelopoiesis of Lin-Sca-1+ cells sevenfold, and synergized with colony-stimulating factors (CSFs) to induce proliferation of Lin-Sca-1+ stem cells. IL-12 increased the number of responding progenitor cells as well as the size of the colonies formed. IL-12 also increased colony formation of high proliferative potential colony-forming cells with multiple CSF combinations. The effects of IL-12 were concentration dependent with a 50% effective dose of 2-20 and 20-200 ng/ml, resulting in maximum stimulation. Furthermore, a neutralizing anti-IL-12 antibody blocked the synergistic effects of rMuIL-12. In addition, IL-12 was found to have synergistic effects on more committed bone marrow progenitors as well. Our results therefore suggest that in addition to being a potent lymphopoietic stimulator, IL-12 is a regulator of the growth of hematopoietic stem cells and their myeloid progeny.

Jacobsen SE, Ruscetti FW, Longo DL, Keller JR. 1991. Antineoplastic dolastatins: potent inhibitors of hematopoietic progenitor cells. J Natl Cancer Inst, 83 (22), pp. 1672-1677. | Show Abstract | Read more

Dolastatins 10 and 15, isolated from the shell-less marine mollusk Dolabella auricularia, are potent antineoplastic agents with unknown myelotoxic effects in vivo. The goal of this study was to determine whether the dolastatins inhibit the proliferation of normal hematopoietic progenitor cells. Assays to test inhibition of colony formation and of cell proliferation were performed in vitro with bone marrow cell preparations enriched for progenitor cells and with progenitor cell lines, respectively, using varying drug concentrations and exposure times. Dolastatins 10 and 15 both inhibited human and murine bone marrow cell colony formation in a concentration-dependent manner, with the concentration required for half maximal inhibition ranging from 0.1 to 1 pg/mL for dolastatin 10 and from 10 to 100 pg/mL for dolastatin 15. These concentrations are 25-fold to 100-fold lower than the concentration required for antineoplastic activity. Complete inhibition of human bone marrow cell colony formation was observed at concentrations of 10-100 pg/mL for dolastatin 10 and 1000-10,000 pg/mL for dolastatin 15. Committed progenitor cells and multipotential progenitor cells were similarly inhibited. The magnitude of inhibition of human hematopoietic cell colony formation was dependent on pre-exposure time to dolastatins 10 and 15, with a reversible effect up to 8 hours and with a 24-hour preincubation resulting in maximal (100%) and irreversible inhibition. Dolastatin 10 at a concentration of 10-100 pg/mL limited the proliferation of six human and four murine hematopoietic progenitor cell lines, as measured by tritiated thymidine incorporation, to between 34% and 83% of that occurring in the absence of the drug. These results indicate that the dolastatins are potent inhibitors of normal hematopoietic progenitor cell proliferation.

Lutz C, Woll PS, Hall G, Castor A, Dreau H, Cazzaniga G, Zuna J, Jensen C, Clark SA, Biondi A et al. 2013. Quiescent leukaemic cells account for minimal residual disease in childhood lymphoblastic leukaemia Leukemia, 27 (5), pp. 1204-1207. | Read more

Riffelmacher T, Clarke A, Richter FC, Stranks A, Pandey S, Danielli S, Hublitz P, Yu Z, Johnson E, Schwerd T et al. 2017. Autophagy-Dependent Generation of Free Fatty Acids Is Critical for Normal Neutrophil Differentiation. Immunity, 47 (3), pp. 466-480.e5. | Show Abstract | Read more

Neutrophils are critical and short-lived mediators of innate immunity that require constant replenishment. Their differentiation in the bone marrow requires extensive cytoplasmic and nuclear remodeling, but the processes governing these energy-consuming changes are unknown. While previous studies show that autophagy is required for differentiation of other blood cell lineages, its function during granulopoiesis has remained elusive. Here, we have shown that metabolism and autophagy are developmentally programmed and essential for neutrophil differentiation in vivo. Atg7-deficient neutrophil precursors had increased glycolytic activity but impaired mitochondrial respiration, decreased ATP production, and accumulated lipid droplets. Inhibiting autophagy-mediated lipid degradation or fatty acid oxidation alone was sufficient to cause defective differentiation, while administration of fatty acids or pyruvate for mitochondrial respiration rescued differentiation in autophagy-deficient neutrophil precursors. Together, we show that autophagy-mediated lipolysis provides free fatty acids to support a mitochondrial respiration pathway essential to neutrophil differentiation.

Qian H, Georges-Labouesse E, Nyström A, Domogatskaya A, Tryggvason K, Jacobsen SEW, Ekblom M. 2007. Distinct roles of integrins alpha6 and alpha4 in homing of fetal liver hematopoietic stem and progenitor cells. Blood, 110 (7), pp. 2399-2407. | Show Abstract | Read more

Homing of hematopoietic stem cells (HSCs) into the bone marrow (BM) is a prerequisite for establishment of hematopoiesis during development and following transplantation. However, the molecular interactions that control homing of HSCs, in particular, of fetal HSCs, are not well understood. Herein, we studied the role of the alpha6 and alpha4 integrin receptors for homing and engraftment of fetal liver (FL) HSCs and hematopoietic progenitor cells (HPCs) to adult BM by using integrin alpha6 gene-deleted mice and function-blocking antibodies. Both integrins were ubiquitously expressed in FL Lin(-)Sca-1(+)Kit(+) (LSK) cells. Deletion of integrin alpha6 receptor or inhibition by a function-blocking antibody inhibited FL LSK cell adhesion to its extracellular ligands, laminins-411 and -511 in vitro, and significantly reduced homing of HPCs to BM. In contrast, the anti-integrin alpha6 antibody did not inhibit BM homing of HSCs. In agreement with this, integrin alpha6 gene-deleted FL HSCs did not display any homing or engraftment defect compared with wild-type littermates. In contrast, inhibition of integrin alpha4 receptor by a function-blocking antibody virtually abrogated homing of both FL HSCs and HPCs to BM, indicating distinct functions for integrin alpha6 and alpha4 receptors during homing of fetal HSCs and HPCs.

Sitnicka E, Buza-Vidas N, Ahlenius H, Cilio CM, Gekas C, Nygren JM, Månsson R, Cheng M, Jensen CT, Svensson M et al. 2007. Critical role of FLT3 ligand in IL-7 receptor independent T lymphopoiesis and regulation of lymphoid-primed multipotent progenitors. Blood, 110 (8), pp. 2955-2964. | Show Abstract | Read more

The molecular pathways regulating lymphoid priming, fate, and development of multipotent bone marrow (BM) stem/progenitor cells that continuously replace thymic progenitors remain largely unknown. Herein, we show that fms-like tyrosine kinase 3 (Flt3) ligand (Fl)-deficient mice have distinct reductions in the earliest thymic progenitors in fetal, postnatal, and adult thymus. A critical role of FL in thymopoiesis was particularly evident in the absence of interleukin-7 receptor alpha (IL-7Ralpha) signaling. Fl-/-Il-7r-/- mice have extensive reductions in fetal and postnatal thymic progenitors that result in a loss of active thymopoiesis in adult mice, demonstrating an indispensable role of FL in IL-7Ralpha-independent fetal and adult T lymphopoiesis. Moreover, we establish a unique and critical role of FL, distinct from that of IL-7Ralpha, in regulation of the earliest lineage-negative (Lin(-)) Lin(-)SCA1+KIT+ (LSK) FLT3(hi) lymphoid-primed multipotent progenitors in BM, demonstrating a key role of FLT3 signaling in regulating the very earliest stages of lymphoid progenitors.

Buza-Vidas N, Cheng M, Duarte S, Nozad H, Jacobsen SEW, Sitnicka E. 2007. Crucial role of FLT3 ligand in immune reconstitution after bone marrow transplantation and high-dose chemotherapy. Blood, 110 (1), pp. 424-432. | Show Abstract | Read more

Almost 5 decades after the first clinical transplantations, delayed immune reconstitution remains a considerable hurdle in bone marrow transplantation, and the mechanisms regulating immune reconstitution after transplantation remain to be established. Whereas adult fms-like tyrosine kinase 3 ligand-deficient (FL(-/-)) mice have reduced numbers of early B- and T-cell progenitors, they sustain close to normal levels of mature B and T cells. Herein, we demonstrate that adult bone marrow cells fail to reconstitute B-cell progenitors and conventional B cells in lethally irradiated FL(-/-) recipients, which also display delayed kinetics of T-cell reconstitution. Similarly, FL is essential for B-cell regeneration after chemotherapy-induced myeloablation. In contrast, fetal progenitors reconstitute B lymphopoiesis in FL(-/-) mice, albeit at reduced levels. A critical role of FL in adult B lymphopoiesis is further substantiated by an age-progressive decline in peripheral conventional B cells in FL(-/-) mice, whereas fetally and early postnatally derived B1 and marginal zone B cells are sustained in a FL-independent manner. Thus, FL plays a crucial role in sustaining conventional B lymphopoiesis in adult mice and, as a consequence, our findings implicate a critical role of FL in promoting immune reconstitution after myeloablation and bone marrow transplantation.

Nygren JM, Bryder D, Jacobsen SEW. 2006. Prolonged cell cycle transit is a defining and developmentally conserved hemopoietic stem cell property. J Immunol, 177 (1), pp. 201-208. | Show Abstract

Adult mouse hemopoietic stem cells (HSCs) are typically quiescent and enter and progress through the cell cycle rarely in steady-state bone marrow, but their rate of proliferation can be dramatically enhanced on demand. We have studied the cell cycle kinetics of HSCs in the developing fetal liver at a stage when they expand extensively. Despite that 100% of fetal liver HSCs divide within a 48-h period, their average cell cycle transit time (10.6 h) is twice that of their downstream progenitors, translating into a prolonged G(1) transit and a period of relative quiescence (G(0)). In agreement with their prolonged G(1) transit when compared with hemopoietic progenitors, competitive transplantation experiments demonstrate that fetal HSCs are highly enriched in G(1) but also functional in S-G(2)-M. This observation combined with experimental data demonstrating that adult HSCs forced to expand ex vivo also sustain a uniquely prolonged cell cycle and G(1) transit, demonstrate at least in part why purified HSCs at any state of development or condition are highly enriched in the G(0)-G(1) phases of the cell cycle. We propose that a uniquely prolonged cell cycle transit is a defining stem cell property, likely to be critical for their maintenance and self-renewal throughout development.

Qian H, Tryggvason K, Jacobsen SE, Ekblom M. 2006. Contribution of alpha6 integrins to hematopoietic stem and progenitor cell homing to bone marrow and collaboration with alpha4 integrins. Blood, 107 (9), pp. 3503-3510. | Show Abstract | Read more

The laminin receptor integrin alpha6 chain is ubiquitously expressed in human and mouse hematopoietic stem and progenitor cells. We have studied its role for homing of stem and progenitor cells to mouse hematopoietic tissues in vivo. A function-blocking anti-integrin alpha6 antibody significantly reduced progenitor cell homing to bone marrow (BM) of lethally irradiated mice, with a corresponding retention of progenitors in blood. Remarkably, the anti-integrin alpha6 antibody profoundly inhibited BM homing of long-term multilineage engrafting stem cells, studied by competitive repopulation assay and analysis of donor-derived lymphocytes and myeloid cells in blood 16 weeks after transplantation. A similar profound inhibition of long-term stem cell homing was obtained by using a function-blocking antibody against alpha4 integrin, studied in parallel. Furthermore, the anti-integrin alpha6 and alpha4 antibodies synergistically inhibited homing of short-term repopulating stem cells. Intravenous injection of anti-integrin alpha6 antibodies, in contrast to antibodies against alpha4 integrin, did not mobilize progenitors or enhance cytokine-induced mobilization by G-CSF. Our results provide the first evidence for a distinct functional role of integrin alpha6 receptor during hematopoietic stem and progenitor cell homing and collaboration of alpha6 integrin with alpha4 integrin receptors during homing of short-term stem cells.

Adolfsson J, Månsson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, Borge O-J, Thoren LAM et al. 2005. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell, 121 (2), pp. 295-306. | Show Abstract | Read more

All blood cell lineages derive from a common hematopoietic stem cell (HSC). The current model implicates that the first lineage commitment step of adult pluripotent HSCs results in a strict separation into common lymphoid and common myeloid precursors. We present evidence for a population of cells which, although sustaining a high proliferative and combined lympho-myeloid differentiation potential, have lost the ability to adopt erythroid and megakaryocyte lineage fates. Cells in the Lin-Sca-1+c-kit+ HSC compartment coexpressing high levels of the tyrosine kinase receptor Flt3 sustain granulocyte, monocyte, and B and T cell potentials but in contrast to Lin-Sca-1+c-kit+Flt3- HSCs fail to produce significant erythroid and megakaryocytic progeny. This distinct lineage restriction site is accompanied by downregulation of genes for regulators of erythroid and megakaryocyte development. In agreement with representing a lymphoid primed progenitor, Lin-Sca-1+c-kit+CD34+Flt3+ cells display upregulated IL-7 receptor gene expression. Based on these observations, we propose a revised road map for adult blood lineage development.

Bryder D, Björgvinsdóttir H, Sasaki Y, Jacobsen SEW. 2005. Deficiency of oncoretrovirally transduced hematopoietic stem cells and correction through ex vivo expansion. J Gene Med, 7 (2), pp. 137-144. | Show Abstract | Read more

BACKGROUND: Extensive efforts to develop hematopoietic stem cell (HSC) based gene therapy have been hampered by low gene marking. Major emphasis has so far been directed at improving gene transfer efficiency, but low gene marking in transplanted recipients might equally well reflect compromised repopulating activity of transduced cells, competing for reconstitution with endogenous and unmanipulated stem cells. METHODS: The autologous settings of clinical gene therapy protocols preclude evaluation of changes in repopulating ability following transduction; however, using a congenic mouse model, allowing for direct evaluation of gene marking of lympho-myeloid progeny, we show here that these issues can be accurately addressed. RESULTS: We demonstrate that conditions supporting in vitro stem cell self-renewal efficiently promote oncoretroviral-mediated gene transfer to multipotent adult bone marrow stem cells, without prior in vivo conditioning. Despite using optimized culture conditions, transduction resulted in striking losses of repopulating activity, translating into low numbers of gene marked cells in competitively repopulated mice. Subjecting transduced HSCs to an ex vivo expansion protocol following the transduction procedure could partially reverse this loss. CONCLUSIONS: These studies suggest that loss of repopulating ability of transduced HSCs rather than low gene transfer efficiency might be the main problem in clinical gene therapy protocols, and that a clinically feasible ex vivo expansion approach post-transduction can markedly improve reconstitution with gene marked stem cells.

Yang L, Dybedal I, Bryder D, Nilsson L, Sitnicka E, Sasaki Y, Jacobsen SEW. 2005. IFN-gamma negatively modulates self-renewal of repopulating human hemopoietic stem cells. J Immunol, 174 (2), pp. 752-757. | Show Abstract

Whereas multiple growth-promoting cytokines have been demonstrated to be involved in regulation of the hemopoietic stem cell (HSC) pool, the potential role of negative regulators is less clear. However, IFN-gamma, if overexpressed, can mediate bone marrow suppression and has been directly implicated in a number of bone marrow failure syndromes, including graft-vs-host disease. Whether IFN-gamma might directly affect the function of repopulating HSCs has, however, not been investigated. In the present study, we used in vitro conditions promoting self-renewing divisions of human HSCs to investigate the effect of IFN-gamma on HSC maintenance and function. Although purified cord blood CD34(+)CD38(-) cells underwent cell divisions in the presence of IFN-gamma, cycling HSCs exposed to IFN-gamma in vitro were severely compromised in their ability to reconstitute long-term cultures in vitro and multilineage engraft NOD-SCID mice in vivo (>90% reduced activity in both HSC assays). In vitro studies suggested that IFN-gamma accelerated differentiation of targeted human stem and progenitor cells. These results demonstrate that IFN-gamma can negatively affect human HSC self-renewal.

Garwicz D, Lennartsson A, Jacobsen SEW, Gullberg U, Lindmark A. 2005. Biosynthetic profiles of neutrophil serine proteases in a human bone marrow-derived cellular myeloid differentiation model. Haematologica, 90 (1), pp. 38-44. | Show Abstract

BACKGROUND AND OBJECTIVES: Human leukocyte elastase, proteinase 3 and cathepsin G are neutrophil granule proteins belonging to the hematopoietic serine protease superfamily. In addition to their established roles in inflammation, they have recently been implicated as regulators of granulopoiesis and mediators of apoptosis. We set out to characterize the individual biosynthetic profiles of these proteins in a neutrophil differentiation model. DESIGN AND METHODS: CD34+CD38+ hematopoietic progenitor cells from 21 healthy human bone marrow donors were cultured in vitro in the presence of recombinant human granulocyte colony-stimulating factor (G-CSF). Biosynthetic radiolabeling was performed in cells from 13 subjects after various periods of differentiation induction. Following protein extraction, the proteins were specifically immunoprecipitated from cell lysates and media and run in gel electrophoresis. Biosynthetic profiles of azurophil granule proteins, in particular members of the neutrophil serine protease family, were examined during myeloid differentiation. RESULTS: The onset of synthesis of myeloperoxidase, lysozyme, leukocyte elastase, and proteinase 3 occurred early after differentiation induction with G-CSF, while synthesis of cathepsin G, azurocidin, and bactericidal/permeability-increasing protein was detected somewhat later. Cathepsin G and proteinase 3 were retained intracellularly relatively efficiently, while leukocyte elastase and lysozyme were secreted to a greater extent. Cell morphology and positive immunocytochemistry for lactoferrin as well as flow cytometric analysis of selected surface antigens confirmed neutrophil-like maturation. INTERPRETATION AND CONCLUSIONS: We demonstrate that azurophil granule proteins, including proforms of human leukocyte elastase, proteinase 3 and cathepsin G, are constitutively secreted to various degrees during in vitro myeloid differentiation of human hematopoietic progenitor cells, in addition to being stored intracellularly in active forms. These findings suggest protein-specific sorting mechanisms and may have implications for the regulation of granulopoiesis.

Yang L, Bryder D, Adolfsson J, Nygren J, Månsson R, Sigvardsson M, Jacobsen SEW. 2005. Identification of Lin(-)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood, 105 (7), pp. 2717-2723. | Show Abstract | Read more

In clinical bone marrow transplantation, the severe cytopenias induced by bone marrow ablation translate into high risks of developing fatal infections and bleedings, until transplanted hematopoietic stem and progenitor cells have replaced sufficient myeloerythroid offspring. Although adult long-term hematopoietic stem cells (LT-HSCs) are absolutely required and at the single-cell level sufficient for sustained reconstitution of all blood cell lineages, they have been suggested to be less efficient at rapidly reconstituting the hematopoietic system and rescuing myeloablated recipients. Such a function has been proposed to rather be mediated by less well-defined short-term hematopoietic stem cells (ST-HSCs). Herein, we demonstrate that Lin(-)Sca1(+)kit(hi)CD34+ short-term reconstituting cells contain 2 phenotypically and functionally distinct subpopulations: Lin(-)Sca1(+)kit(hi)CD34(+)flt3- cells fulfilling all criteria of ST-HSCs, capable of rapidly reconstituting myelopoiesis, rescuing myeloablated mice, and generating Lin(-)Sca1(+)kit(hi)CD34(+)flt3+ cells, responsible primarily for rapid lymphoid reconstitution. Representing the first commitment steps from Lin(-)Sca1(+)kit(hi) CD34(-)flt3- LT-HSCs, their identification will greatly facilitate delineation of regulatory pathways controlling HSC fate decisions and identification of human ST-HSCs responsible for rapid reconstitution following HSC transplantations.

Bryder D, Sasaki Y, Borge OJ, Jacobsen S-EW. 2004. Deceptive multilineage reconstitution analysis of mice transplanted with hemopoietic stem cells, and implications for assessment of stem cell numbers and lineage potentials. J Immunol, 172 (3), pp. 1548-1552. | Show Abstract

Hemopoietic stem cells (HSC) are identified through their unique ability, at the single cell level, to long-term reconstitute all blood cell lineages. Sustained myeloid reconstitution is considered the hallmark of HSC, because myeloid progenitors and their progeny have very short half-lives. Here we demonstrate that the established practice of relying on RB6-8C5 as a myeloid specific Ab can result in overestimation of HSC frequencies because the RB6-8C5 Ab also detects Ags expressed on a sizeable population of CD3(+)CD8(+) T cells, constitutively as well as following transplantation. Likewise, a high fraction of mice transplanted with limiting numbers of ex vivo expanded Lin(-)Sca(+)kit(+)CD34(-) HSC show long-term RB6-8C5(+)CD3(+) (lymphoid) but no RB6-8C5(+)CD3(-) (myeloid) reconstitution. Most noteworthy, the use of RB6-8C5 as a myeloid specific Ab can be deceptive by implicating the existence of lineage-restricted HSC capable of long-term reconstituting the myeloid and T, but not B, cell lineage. Because cross-lineage expression of "lineage-specific" markers is unlikely to be unique to the blood system, claims of unexpected cell fates should be substantiated not only by acquisition of lineage-specific markers, but also absence of markers of other lineages normally derived from the investigated stem cells.

Sitnicka E, Brakebusch C, Martensson I-L, Svensson M, Agace WW, Sigvardsson M, Buza-Vidas N, Bryder D, Cilio CM, Ahlenius H et al. 2003. Complementary signaling through flt3 and interleukin-7 receptor alpha is indispensable for fetal and adult B cell genesis. J Exp Med, 198 (10), pp. 1495-1506. | Show Abstract | Read more

Extensive studies of mice deficient in one or several cytokine receptors have failed to support an indispensable role of cytokines in development of multiple blood cell lineages. Whereas B1 B cells and Igs are sustained at normal levels throughout life of mice deficient in IL-7, IL-7Ralpha, common cytokine receptor gamma chain, or flt3 ligand (FL), we report here that adult mice double deficient in IL-7Ralpha and FL completely lack visible LNs, conventional IgM+ B cells, IgA+ plasma cells, and B1 cells, and consequently produce no Igs. All stages of committed B cell progenitors are undetectable in FL-/- x IL-7Ralpha-/- BM that also lacks expression of the B cell commitment factor Pax5 and its direct target genes. Furthermore, in contrast to IL-7Ralpha-/- mice, FL-/- x IL-7Ralpha-/- mice also lack mature B cells and detectable committed B cell progenitors during fetal development. Thus, signaling through the cytokine tyrosine kinase receptor flt3 and IL-7Ralpha are indispensable for fetal and adult B cell development.

Dybedal I, Yang L, Bryder D, Aastrand-Grundstrom I, Leandersson K, Jacobsen SEW. 2003. Human reconstituting hematopoietic stem cells up-regulate Fas expression upon active cell cycling but remain resistant to Fas-induced suppression. Blood, 102 (1), pp. 118-126. | Show Abstract | Read more

The Fas receptor and its ligand have been implicated in mediating the bone marrow (BM) suppression observed in graft-versus-host disease and a number of other BM-failure syndromes. However, previous studies have suggested that Fas is probably not expressed on human hematopoietic stem cells (HSCs), but up-regulated as a consequence of their commitment and differentiation, suggesting that progenitors or differentiated blood cells, rather than HSCs, are the targets of Fas-mediated suppression. The present studies confirm that candidate HSCs in human cord blood and BM lack constitutive expression of Fas, but demonstrate that Fas expression on CD34+ progenitor and stem cells is correlated to their cell cycle and activation status. With the use of recently developed in vitro conditions promoting HSC self-renewing divisions, Fas was up-regulated on virtually all HSCs capable of multilineage reconstituting nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice in vivo, as well as on long-term culture-initiating cells (LTC-ICs). Similarly, in vivo cycling of NOD-SCID repopulating cells upon transplantation, resulted in up-regulation of Fas expression. However, repopulating HSCs expressing high levels of Fas remained highly resistant to Fas-mediated suppression, and HSC function was compromised only upon coactivation with tumor necrosis factor. Thus, reconstituting human HSCs up-regulate Fas expression upon active cycling, demonstrating that HSCs could be targets for Fas-mediated BM suppression.

Sitnicka E, Bryder D, Theilgaard-Mönch K, Buza-Vidas N, Adolfsson J, Jacobsen SEW. 2002. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity, 17 (4), pp. 463-472. | Show Abstract | Read more

The first lineage commitment step of hematopoietic stem cells (HSC) results in separation into distinct lymphoid and myeloid differentiation pathways, reflected in the generation of common lymphoid and myeloid progenitors (CLP and CMP, respectively). In this report we present the first evidence for a nonredundant regulator of this process, in that adult mice deficient in expression of the flt3 ligand (FL) have severely (10-fold) reduced levels of the CLP, accompanied by reductions in the earliest identifiable B and T cell progenitors. In contrast, CMP and HSC are unaffected in FL-deficient mice. Noteworthy, CLP express high levels of both the flt3 receptor and ligand, indicating a potential autocrine role of FL in regulation of the earliest lymphoid commitment step from HSC.

Nilsson L, Astrand-Grundström I, Anderson K, Arvidsson I, Hokland P, Bryder D, Kjeldsen L, Johansson B, Hellström-Lindberg E, Hast R, Jacobsen SEW. 2002. Involvement and functional impairment of the CD34(+)CD38(-)Thy-1(+) hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood, 100 (1), pp. 259-267. | Show Abstract | Read more

Clonality studies of mature cells suggest that the primary transformation event in myelodysplastic syndrome (MDS) most frequently occurs in a myeloid-restricted progenitor, a hypothesis supported by recent studies of purified CD34(+)Thy1(+) hematopoietic stem cells (HSCs) in cases with trisomy 8 (+8). In contrast, we recently demonstrated that a lymphomyeloid HSC is the target for transformation in MDS cases with del(5q), potentially reflecting heterogeneity within MDS. However, since +8 is known to frequently be a late event in the MDS transformation process, it remained a possibility that CD34(+)CD38(-)Thy1(+) HSC disomic for chromosome 8 might be part of the MDS clone. In the present studies, although a variable fraction of CD34(+)CD38(-)Thy1(+) cells were disomic for chromosome 8, they did not possess normal HSC activity in long-term cultures and nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice. Mixing experiments with normal CD34(+)CD38(-) cells suggested that this HSC deficiency was intrinsic and not mediated by indirect mechanisms. Furthermore, investigation of 4 MDS cases with combined del(5q) and +8 demonstrated that the +8 aberration was always secondary to del(5q). Whereas del(5q) invariably occurs in CD34(+)CD38(-)Thy-1(+) HSCs, the secondary +8 event might frequently arise in progeny of MDS HSCs. Thus, CD34(+)CD38(-)Thy1(+) HSCs are invariably part of the MDS clone also in +8 patients, and little HSC activity can be recovered from the CD34(+) CD38(-)Thy1(+) HSC. Finally, in advanced cases of MDS, the MDS reconstituting activity is exclusively derived from the minor CD34(+)CD38(-) HSC population, demonstrating that MDS stem cells have a similar phenotype as normal HSCs, potentially complicating the development of autologous transplantation for MDS.

Fan X, Valdimarsdottir G, Larsson J, Brun A, Magnusson M, Jacobsen SE, ten Dijke P, Karlsson S. 2002. Transient disruption of autocrine TGF-beta signaling leads to enhanced survival and proliferation potential in single primitive human hemopoietic progenitor cells. J Immunol, 168 (2), pp. 755-762. | Show Abstract

Hemopoietic stem cells (HSCs) are maintained at relative quiescence by the balance between the positive and negative regulatory factors that stimulate or inhibit their proliferation. Blocking the action of negative regulatory factors may provide a new approach for inducing HSCs into proliferation. A variety of studies have suggested that TGF-beta negatively regulates cell cycle progression of HSCs. In this study, a dominant negatively acting mutant of TGF-beta type II receptor (TbetaRIIDN) was transiently expressed in HSCs by using adenoviral vector-mediated gene delivery, such that the effects of disrupting the autocrine TGF-beta signaling in HSCs can be directly examined at a single cell level. Adenoviral vectors allowing the expression of TbetaRIIDN and green fluorescence protein in the same CD34(+)CD38(-)Lin(-) cells were constructed. Overexpression of TbetaRIIDN specifically disrupted TGF-beta-mediated signaling. Autocrine TGF-beta signaling in CD34(+)CD38(-)Lin(-) cells was studied in single cell assays under serum-free conditions. Transient blockage of autocrine TGF-beta signaling in CD34(+)CD38(-)Lin(-) cells enhanced their survival. Furthermore, the overall proliferation potential and proliferation kinetics in these cells were significantly enhanced compared with the CD34(+)CD38(-)Lin(-) cells expressing green fluorescence protein alone. Therefore, we have successfully blocked the autocrine TGF-beta-negative regulatory loop of primitive hemopoietic progenitor cells.

Bryder D, Ramsfjell V, Dybedal I, Theilgaard-Mönch K, Högerkorp CM, Adolfsson J, Borge OJ, Jacobsen SE. 2001. Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation. J Exp Med, 194 (7), pp. 941-952. | Show Abstract | Read more

Multipotent self-renewing hematopoietic stem cells (HSCs) are responsible for reconstitution of all blood cell lineages. Whereas growth stimulatory cytokines have been demonstrated to promote HSC self-renewal, the potential role of negative regulators remains elusive. Receptors for tumor necrosis factor (TNF) and Fas ligand have been implicated as regulators of steady-state hematopoiesis, and if overexpressed mediate bone marrow failure. However, it has been proposed that hematopoietic progenitors rather than stem cells might be targeted by Fas activation. Here, murine Lin(-)Sca1(+)c-kit(+) stem cells revealed little or no constitutive expression of Fas and failed to respond to an agonistic anti-Fas antibody. However, if induced to undergo self-renewal in the presence of TNF-alpha, the entire short and long-term repopulating HSC pool acquired Fas expression at high levels and concomitant activation of Fas suppressed in vitro growth of Lin(-)Sca1(+)c-kit(+) cells cultured at the single cell level. Moreover, Lin(-)Sca1(+)c-kit(+) stem cells undergoing self-renewal divisions in vitro were severely and irreversibly compromised in their short- and long-term multilineage reconstituting ability if activated by TNF-alpha or through Fas, providing the first evidence for negative regulators of HSC self-renewal.

Woods NB, Fahlman C, Mikkola H, Hamaguchi I, Olsson K, Zufferey R, Jacobsen SE, Trono D, Karlsson S. 2000. Lentiviral gene transfer into primary and secondary NOD/SCID repopulating cells. Blood, 96 (12), pp. 3725-3733. | Show Abstract

The ability of lentiviral vectors to transfer genes into human hematopoietic stem cells was studied, using a human immunodeficiency virus 1 (HIV-1)-derived vector expressing the green fluorescence protein (GFP) downstream of the phosphoglycerate kinase (PGK) promoter and pseudotyped with the G protein of vesicular stomatitis virus (VSV). High-efficiency transduction of human cord blood CD34(+) cells was achieved after overnight incubation with vector particles. Sixteen to 28 percent of individual colony-forming units granulocyte-macrophage (CFU-GM) colonies derived from cord blood CD34(+) cells were positive by polymerase chain reaction (PCR) for the GFP gene. The transduction efficiency of SCID-repopulating cells (SRC) within the cord blood CD34(+) population was assessed by serial transplantation into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. When 400,000 cord blood CD34(+) cells were transplanted into primary recipients, all primary and secondary recipients contained and expressed the transgene. Over 50% of CFU-GM colonies derived from the bone marrow of these primary and secondary recipients contained the vector on average as determined by PCR. Transplantation of transduced cells in limiting dilution generated GFP(+) lymphoid and myeloid progeny cells that may have arisen from a single SRC. Inverse PCR analysis was used to amplify vector-chromosomal junctional fragments in colonies derived from SRC and confirmed that the vector was integrated. These results show that lentiviral vectors can efficiently transduce very primitive human hematopoietic progenitor and stem cells. (Blood. 2000;96:3725-3733)

Nilsson L, Astrand-Grundström I, Arvidsson I, Jacobsson B, Hellström-Lindberg E, Hast R, Jacobsen SE. 2000. Isolation and characterization of hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level. Blood, 96 (6), pp. 2012-2021. | Show Abstract

Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal disorders characterized by ineffective hematopoiesis and frequent progression to acute myeloid leukemia. Within MDS, 5q- syndrome constitutes a distinct clinical entity characterized by an isolated deletion of the long arm of chromosome 5 (5q-), a relatively good prognosis, and infrequent transformation to acute leukemia. The cell of origin in 5q- syndrome as well as in other 5q-deleted MDS patients has not been established, but evidence for involvement of multiple myeloid (but not lymphoid) lineages has suggested that a myeloid-restricted progenitor rather than a pluripotent (lympho-myeloid) stem cell might be the primary target in most patients. Although in 9 patients no evidence of peripheral blood T-cell and only 1 case of B-cell involvement was found, the data herein support that 5q deletions occur in hematopoietic stem cells (HSCs) with a combined lympho-myeloid potential. First, in all investigated patients a minimum of 94% of cells in the minor CD34(+)CD38(-) HSC compartment were 5q deleted as determined by fluorescence in situ hybridization. Second, in 3 of 5 patients 5q aberrations were detected in a large fraction (25% to 90%) of purified CD34(+)CD19(+) pro-B cells. Furthermore, extensive functional characterization with regard to responsiveness to early-acting cytokines, long-term culture-initiating cells, and nonobese diabetic/severe combined immunodeficiency repopulating cells supported that MDS HSCs in 5q-deleted patients are CD34(+)CD38(-), but inefficient at reconstituting hematopoiesis.

Gisler R, Jacobsen SE, Sigvardsson M. 2000. Cloning of human early B-cell factor and identification of target genes suggest a conserved role in B-cell development in man and mouse. Blood, 96 (4), pp. 1457-1464. | Show Abstract

Early B-cell factor (EBF) is a helix-loop-helix transcription factor suggested to be essential for B-cell development in the mouse. Several genetic targets for EBF have been identified in mice, among these the surrogate light chain lambda5 and the signal-transducing molecules Igalpha (mb-1) and Igbeta (B29). This article reports cloning of the human homologue of EBF, hEBF. This protein has 93% sequence and 98.8% amino acid homology with mouse EBF. The encoded protein binds DNA and is expressed in cells of the B lineage, but not in cell populations representing T lymphocytes or myeloid cells. It is also shown that EBF-binding sites are functionally conserved in the human mb-1 and B29 promoters because hEBF interacts with these in the electrophoretic mobility shift assay (EMSA) and have the ability to increase the activity of reporter constructs under the control of these promoters in nonlymphoid HeLa cells. A third genetic target for hEBF is the promoter of the human surrogate light chain 14.1. This promoter contains 5 independent binding sites capable of interacting with hEBF in the EMSA, and the activity of the promoter was induced 24-fold in co-transfection experiments. These findings suggest that the human homologue of mouse EBF displays conserved biochemical features as well as genetic targets, indicating that this protein also has an important role in human B-cell development. (Blood. 2000;96:1457-1464)

Bergh G, Ehinger M, Olsson I, Jacobsen SE, Gullberg U. 1999. Involvement of the retinoblastoma protein in monocytic and neutrophilic lineage commitment of human bone marrow progenitor cells. Blood, 94 (6), pp. 1971-1978. | Show Abstract

The retinoblastoma gene product (pRb) is involved in both cell cycle regulation and cell differentiation. pRb may have dual functions during cell differentiation: partly by promoting a cell cycle brake at G(1) and also by interacting with tissue-specific transcription factors. We recently showed that pRb mediates differentiation of leukemic cell lines involving mechanisms other than the induction of G(1) arrest. In the present study, we investigated the role of pRb in differentiation of human bone marrow progenitor cells. Human bone marrow cells were cultured in a colony-forming unit-granulocyte-macrophage (CFU-GM) assay. The addition of antisense RB oligonucleotides (alpha-RB), but not the addition of sense orientated oligonucleotides (SO) or scrambled oligonucleotides (SCR), reduced the number of colonies staining for nonspecific esterase without affecting the clonogenic growth. Monocytic differentiation of CD34(+) cells supported by FLT3-ligand and interleukin-3 (IL-3) was correlated to high levels of hypophosphorylated pRb, whereas neutrophilic differentiation, supported by granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF), was correlated to low levels. The addition of alpha-RB to liquid cultures of CD34(+) cells, supported with FLT3-ligand and IL-3, inhibited monocytic differentiation. This was judged by morphology, the expression of CD14, and staining for esterase. Moreover, the inhibition of monocytic differentiation of CD34(+) cells mediated by alpha-RB, which is capable of reducing pRb expression, was counterbalanced by an enhanced neutrophilic differentiation response, as judged by morphology and the expression of lactoferrin. CD34(+) cells incubated with oligo buffer, alpha-RB, SO, or SCR showed similar growth rates. Taken together, these data suggest that pRb plays a critical role in the monocytic and neutrophilic lineage commitment of human bone marrow progenitors, probably by mechanisms that are not strictly related to control of cell cycle progression.

Borge OJ, Adolfsson J, Mårtensson A, Mårtensson IL, Jacobsen SE. 1999. Lymphoid-restricted development from multipotent candidate murine stem cells: distinct and complimentary functions of the c-kit and flt3-ligands. Blood, 94 (11), pp. 3781-3790. | Show Abstract

The two tyrosine kinase receptors, c-kit and flt3, and their respective ligands KL and FL, have been demonstrated to play key and nonredundant roles in regulating the earliest events in hematopoiesis. However, their precise roles and potential interactions in promoting early lymphoid commitment and development remain unclear. Here we show that most if not all murine Lin(-/lo)Sca1(+)c-kit(+) bone marrow (BM) cells generating B220(+)CD19(+) proB-cells in response to FL and interleukin-7 (IL-7) also have a myeloid potential. In contrast to FL + IL-7, KL + IL-7 could not promote proB-cell formation from Lin(-/lo)Sca1(+)c-kit(+) cells. However, KL potently enhanced FL + IL-7-stimulated proB-cell formation, in part through enhanced recruitment of FL + IL-7-unresponsive Lin(-/lo)Sca1(+)c-kit(+) progenitors, and in part by enhancing the growth of proB-cells. The enhanced recruitment (4-fold) in response to KL occurred exclusively from the Lin(-/lo)Sca1(+)c-kit(+)flt3(-) long-term repopulating stem cell population, whereas KL had no effect on FL + IL-7-stimulated recruitment of Lin(-/lo)Sca1(+)c-kit(+)flt3(+) short-term repopulating cells. The progeny of FL + IL-7-stimulated Lin(-/lo)Sca1(+)c-kit(+) cells lacked in vitro and in vivo myeloid potential, but efficiently reconstituted both B and T lymphopoiesis. In agreement with this FL, but not KL, efficiently induced expression of B220 and IL-7 receptor-alpha on Lin(-/lo)Sca1(+)c-kit(+)flt3(+) cells. Thus, whereas KL appears crucial for recruitment of FL + IL-7-unresponsive candidate (c-kit(+)flt3(-)) murine stem cells, FL is essential and sufficient for development toward lymphoid restricted progenitors from a population of (c-kit(+)flt3(+)) multipotent short-term reconstituting progenitors.

Ramsfjell V, Bryder D, Björgvinsdóttir H, Kornfält S, Nilsson L, Borge OJ, Jacobsen SE. 1999. Distinct requirements for optimal growth and In vitro expansion of human CD34(+)CD38(-) bone marrow long-term culture-initiating cells (LTC-IC), extended LTC-IC, and murine in vivo long-term reconstituting stem cells. Blood, 94 (12), pp. 4093-4102. | Show Abstract

Recently, primitive human bone marrow (BM) progenitors supporting hematopoiesis in extended (>60 days) long-term BM cultures were identified. Such extended long-term culture-initiating cells (ELTC-IC) are of the CD34(+)CD38(-) phenotype, are quiescent, and are difficult to recruit into proliferation, implicating ELTC-IC as the most primitive human progenitor cells detectable in vitro. However, it remains to be established whether ELTC-IC can proliferate and potentially expand in response to early acting cytokines. Here, CD34(+)CD38(-) BM ELTC-IC (12-week) were efficiently recruited into proliferation and expanded in vitro in response to early acting cytokines, but conditions for expansion of ELTC-IC activity were distinct from those of traditional (5-week) LTC-IC and murine long-term repopulating cells. Whereas c-kit ligand (KL), interleukin-3 (IL-3), and IL-6 promoted proliferation and maintenance or expansion of murine long-term reconstituting activity and human LTC-IC, they dramatically depleted ELTC-IC activity. In contrast, KL, flt3 ligand (FL), and megakaryocyte growth and development factor (MGDF) (and KL + FL + IL-3) expanded murine long-term reconstituting activity as well as human LTC-IC and ELTC-IC. Expansion of LTC-IC was most optimal after 7 days of culture, whereas optimal expansion of ELTC-IC activity required 12 days, most likely reflecting the delayed recruitment of quiescent CD34(+)CD38(-) progenitors. The need for high concentrations of KL, FL, and MGDF (250 ng/mL each) and serum-free conditions was more critical for expansion of ELTC-IC than of LTC-IC. The distinct requirements for expansion of ELTC-IC activity when compared with traditional LTC-IC suggest that the ELTC-IC could prove more reliable as a predictor for true human stem cell activity after in vitro stem cell manipulation.

Veiby OP, Borge OJ, Mârtensson A, Beck EX, Schade AE, Grzegorzewski K, Lyman SD, Mârtensson IL, Jacobsen SE. 1997. Bidirectional effect of interleukin-10 on early murine B-cell development: stimulation of flt3-ligand plus interleukin-7-dependent generation of CD19(-) ProB cells from uncommitted bone marrow progenitor cells and growth inhibition of CD19(+) ProB cells. Blood, 90 (11), pp. 4321-4331. | Show Abstract

B-cell commitment and early development from multipotent hematopoietic progenitor cells has until recently been considered to be dependent on direct interaction with stromal cells. We recently showed that the flt3 ligand (FL) has a unique ability to interact with interleukin-7 (IL-7) to directly and selectively promote B-cell development from murine bone marrow progenitor cells with a combined myeloid and lymphoid potential. Here we report that whereas IL-10 alone has no ability to stimulate growth of primitive (Lin-Sca-1(+)c-kit+) bone marrow progenitor cells, it potently enhances FL + IL-7-induced proliferation (sevenfold). This enhanced proliferation results from recruitment of progenitors unresponsive to FL + IL-7 alone, as well as from increased growth of individual clones, resulting in a 7,000-fold cellular expansion over 12 days. Single cell cultures and delayed addition studies suggested that the stimulatory effect of IL-10 was directly mediated on the progenitor cells. The cells generated in response to FL + IL-7 + IL-10 appeared to be almost exclusively proB cells, as shown by their expression of B220, CD24, CD43, and lack of expression of c mu, myeloid, erythroid, and T-cell surface antigens. Although IL-10 also enhanced kit ligand (KL) + IL-7-induced proliferation of Lin-Sca-1(+)c-kit+ progenitor cells, the resulting cells were predominantly myeloid progeny. Accordingly, FL + IL-7 + IL-10 was 100-fold more efficient in stimulating production of proB cells than KL + IL-7 + IL-10. In contrast to its ability to stimulate the earliest phase of proB cell formation and proliferation, IL-10 inhibited growth of proB cells generated in response to FL + IL-7. Analysis of CD19 expression on cells generated in FL + IL-7 + IL-10 showed that almost all cells generated under these conditions lacked expression of CD19, in contrast to cells generated in the absence of IL-10, which were predominantly CD19(+). Replating of sorted CD19(+) and CD19(-) proB cells in FL + IL-7 or FL + IL-7 + IL-10 showed that IL-10 efficiently blocked growth of CD19(+), but not CD19(-) cells. Both CD19(-) and CD19(+) cells expressed lambda5 and VpreB , shown to be specific for B-cell progenitors. In addition, sorted CD19(-) cells generated CD19(+) cells in response to FL + IL-7. Thus, IL-10 has a dual regulatory effect on early B-cell development from primitive murine bone marrow progenitor cells in that it enhances FL + IL-7-induced proB-cell formation and growth before acquisition of CD19 expression, whereas growth of CD19(+) proB cells is inhibited.

Borge OJ, Ramsfjell V, Cui L, Jacobsen SE. 1997. Ability of early acting cytokines to directly promote survival and suppress apoptosis of human primitive CD34+CD38- bone marrow cells with multilineage potential at the single-cell level: key role of thrombopoietin. Blood, 90 (6), pp. 2282-2292. | Show Abstract

Purified primitive progenitor/stem cells from bone marrow represent likely target populations for ex vivo expansion of stem cells to be used in high-dose chemotherapy or gene therapy. Whereas such primitive progenitor cells require combined stimulation by multiple cytokines for growth, some cytokines selectively promote viability rather than growth when acting individually. We investigated here for the first time the direct effects of cytokines on survival of primitive CD34+CD38- human bone marrow progenitor cells at the single-cell level. Interleukin-3 (IL-3) and the ligands for c-kit (KL) and flt3 (FL) had direct and selective viability-promoting effects on a small fraction of CD34+CD38- but not CD34+CD38+ progenitor cells. Interestingly, the recently cloned thrombopoietin (Tpo), although stimulating little growth, kept most CD34+CD38- progenitors viable after prolonged culture, maintaining twofold and fourfold more progenitors viable than KL and IL-3, respectively. A high fraction of these progenitors had a combined myeloid and erythroid differentiation potential, as well as capacity for prolonged production of progenitor cells under stroma-independent conditions. In addition, Tpo promoted viability of CD34+CD38- long-term culture-initiating cells, further supporting the idea that Tpo promotes viability of primitive human progenitor cells. Finally, Tpo suppressed apoptosis of CD34+CD38- cells in culture. Thus, the present studies show a novel effect of Tpo, implicating a potential role of this cytokine in maintaining quiescent primitive human progenitor cells viable.

Ramsfjell V, Borge OJ, Cui L, Jacobsen SE. 1997. Thrombopoietin directly and potently stimulates multilineage growth and progenitor cell expansion from primitive (CD34+ CD38-) human bone marrow progenitor cells: distinct and key interactions with the ligands for c-kit and flt3, and inhibitory effects of TGF-beta and TNF-alpha. J Immunol, 158 (11), pp. 5169-5177. | Show Abstract

Thrombopoietin (Tpo) is a primary regulator of megakaryocyte and platelet production. However, studies in c-mpl-deficient mice suggest that Tpo might also play an important role in early hemopoiesis. Here, the direct ability of Tpo to stimulate stroma-independent growth, multilineage differentiation, and progenitor cell expansion from single primitive CD34+ CD38- human bone marrow cells was investigated. Tpo alone stimulated limited clonal growth, but synergized with c-kit ligand (KL), flt3 ligand (FL), or IL-3 to potently enhance clonogenic growth. Whereas KL and FL in combination stimulated the clonal growth of only 3% of CD34+ CD38- cells, 40% of CD34+ CD38- cells were recruited by KL+FL+Tpo, demonstrating that Tpo promotes the growth of a high fraction of CD34+ CD38- progenitor cells. Additional cytokines (IL-3, IL-6, and erythropoietin (Epo)) did not significantly enhance clonal growth above that observed in response to KL+FL+Tpo. In contrast, Tpo enhanced clonogenic growth in response to KL+FL+IL-3+IL-6+Epo by as much as 80%, implicating a key role for this cytokine in early hemopoiesis. Importantly, we also demonstrate that the majority of Tpo-recruited CD34+ CD38- progenitor cells have a multilineage differentiation potential, and that Tpo promotes prolonged expansion of multipotent progenitors. Specifically, whereas progenitor cells were reduced in cultures containing only KL+FL, addition of Tpo resulted in 40-fold expansion of multipotent progenitors following a 14-day incubation. Finally, we identified inhibitors of Tpo-induced progenitor cell growth, in that TGF-beta as well as TNF-alpha almost completely abrogated the growth of CD34+ CD38- progenitor cells in response to Tpo alone as well as KL+FL+Tpo.

Lømo J, Blomhoff HK, Jacobsen SE, Krajewski S, Reed JC, Smeland EB. 1997. Interleukin-13 in combination with CD40 ligand potently inhibits apoptosis in human B lymphocytes: upregulation of Bcl-xL and Mcl-1. Blood, 89 (12), pp. 4415-4424. | Show Abstract

Interleukin-13 (IL-13) is a novel T-cell-derived cytokine with IL-4-like effects on many cell types. In human B lymphocytes, IL-13 induces activation, stimulates proliferation in combination with anti-IgM or anti-CD40 antibodies, and directs Ig isotype switching towards IgE and IgG4 isotypes. We show here that IL-13 also regulates human B-cell apoptosis. IL-13 reduced spontaneous apoptosis of peripheral blood B cells in vitro, as shown by measurement of DNA fragmentation using the TUNEL and Nicoletti assays. The inhibition of cell death by IL-13 alone was significant but modest, but was potently enhanced in combination with CD40 ligand (CD40L), a survival stimulus for B cells by itself. Interestingly, IL-13 increased the expression of CD40 on peripheral blood B cells, providing a possible mechanism for the observed synergy. IL-13 alone was a less potent inhibitor of apoptosis than IL-4. Moreover, there was no additive effect of combining IL-4 and IL-13 at supraoptimal concentrations, which is consistent with the notion that the IL-4 and IL-13 binding sites share a common signaling subunit. The combination of IL-13 with CD40L augmented the expression of the Bcl-2 homologues Bcl-xL and Mcl-1, suggesting this as a possible intracellular mechanism of induced survival. By contrast, levels of Bcl-2, and two other Bcl-2 family members, Bax and Bak, remained unaltered. Given the importance of the CD40-CD40L interaction in B-cell responses, these results suggest a significant role of IL-13 in the regulation of B-cell apoptosis.

Veiby OP, Jacobsen FW, Cui L, Lyman SD, Jacobsen SE. 1996. The flt3 ligand promotes the survival of primitive hemopoietic progenitor cells with myeloid as well as B lymphoid potential. Suppression of apoptosis and counteraction by TNF-alpha and TGF-beta. J Immunol, 157 (7), pp. 2953-2960. | Show Abstract

The recently cloned fIt3 ligand (FL) potently enhances hemopoietic growth factor-induced growth of primitive hemopoietic progenitors. In agreement with previous reports, we found FL alone to be a weak mitogen for primitive Lin-Sca-1+ murine bone marrow progenitors. Using delayed addition of growth-promoting cytokines, we demonstrate that FL potently promotes the in vitro survival of Lin-Sca-1+ progenitors responsive to a potent myeloid growth factor combination (FL, stem cell factor (SCF), granulocyte CSF (G-CSF), and IL-1 alpha). Whereas no such progenitors survived in cultures supplemented with medium alone, 33% survived in FL compared with 75 and 13% in the presence of SCF and IL-1 alpha, respectively. These results were obtained when cells were plated individually, suggesting that the viability-promoting effect of FL is mediated directly on the progenitors. Whereas SCF was superior to FL in promoting the survival of FL-, SCF-, G-CSF-, and IL-1 alpha-stimulated Lin-Sca-1+ progenitors, FL was more efficient than SCF at promoting the survival of progenitors with a B cell potential, as measured by their ability to produce B220+ cells in response to delayed addition of FL, SCF, and IL-7. Seventy-one percent of the B220+ cell production could be recovered following 40-h incubation with FL compared with 2% in response to SCF. Analysis of day 12 spleen CFU content after 40-h preincubation of Lin-Sca-1+ cells in FL or SCF demonstrated that SCF maintained 64% of the day 12 spleen CFU, whereas only 16% survived in the presence of FL. Finally, there was no significant difference between the ability of FL and SCF to maintain the viability of long-term culture-initiating cells (25 and 32%, respectively). The ability of FL to promote the survival of Lin-Sca-1+ progenitor cells was reflected by the finding that FL also suppressed apoptosis. Finally, TGF-beta abrogated and TNF-alpha potently counteracted the survival-promoting effect of FL. Thus, FL promotes the survival of primitive hemopoietic progenitor cells, in particular those with an inherent B lymphoid potential.

Ramsfjell V, Borge OJ, Veiby OP, Cardier J, Murphy MJ, Lyman SD, Lok S, Jacobsen SE. 1996. Thrombopoietin, but not erythropoietin, directly stimulates multilineage growth of primitive murine bone marrow progenitor cells in synergy with early acting cytokines: distinct interactions with the ligands for c-kit and FLT3. Blood, 88 (12), pp. 4481-4492. | Show Abstract

Thrombopoietin (Tpo), the ligand for c-mpl, has been shown to be the principal regulator of megakaryocytopoiesis and platelet production. The ability of Tpo to potently stimulate the growth of committed megakaryocyte (Mk) progenitor cells has been studied in detail. Murine fetal liver cells, highly enriched in primitive progenitors, have been shown to express c-mpl, but little is known about the ability of Tpo to stimulate the growth and differentiation of primitive multipotent bone marrow (BM) progenitor cells. Here, we show that Tpo alone and in combination with early acting cytokines can stimulate the growth and multilineage differentiation of Lin- Sca-1+ BM progenitor cells. In particular, Tpo potently synergized with the ligands for c-kit (stem cell factor [SCF]) and flt3 (FL) to stimulate an increase in the number and size of clones formed from Lin- Sca-1+ progenitors. When cells were plated at 1 cell per well, the synergistic effect of Tpo was observed both in fetal calf serum-supplemented and serum-depleted medium and was decreased if the addition of Tpo to cultures was delayed for as little as 24 hours, suggesting that Tpo is acting directly on the primitive progenitors. Tpo added to SCF + erythropoietin (Epo)-supplemented methylcellulose cultures potently enhanced the formation of multilineage colonies containing granulocytes, macrophages, erythrocytes, and Mks. SCF potently enhanced Tpo-stimulated production of high-ploidy Mks from Lin- Sca-1+ progenitors, whereas the increased growth response obtained when combining Tpo with FL did not translate into increased Mk production. The ability of Tpo and SCF to synergistically enhance the growth of Lin- Sca-1+ progenitors was predominantly observed in the more primitive rhodamine 123(lo) fraction. Tpo also enhanced growth of Lin- Sca-1+ progenitors when combined with interleukin-3 (IL-3) and IL-11 but not with IL-12, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, or Epo. Epo, which has high homology to Tpo, was unable to stimulate the growth of Lin- Sca-1+ progenitors alone or in combination with SCF or FL, suggesting that c-mpl is expressed on more primitive stages of progenitors than the Epo receptor. Thus, the present studies show the potent ability of Tpo to enhance the growth of primitive multipotent murine BM progenitors in combination with multiple early acting cytokines and documents its unique ability to synergize with SCF to enhance Mk production from such progenitors.

Borge OJ, Ramsfjell V, Veiby OP, Murphy MJ, Lok S, Jacobsen SE. 1996. Thrombopoietin, but not erythropoietin promotes viability and inhibits apoptosis of multipotent murine hematopoietic progenitor cells in vitro. Blood, 88 (8), pp. 2859-2870. | Show Abstract

The recently cloned c-mpl ligand, thrombopoietin (Tpo), has been extensively characterized with regard to its ability to stimulate the growth, development, and ploidy of megakaryocyte progenitor cells and platelet production in vitro and in vivo. Primitive hematopoietic progenitors have been shown to express c-mpl, the receptor for Tpo. In the present study, we show that Tpo efficiently promotes the viability of a subpopulation of Lin-Sca-1+ bone marrow progenitor cells. The ability of Tpo to maintain viable Lin-Sca-1+ progenitors was comparable to that of granulocyte colony-stimulating factor and interleukin-1, whereas stem cell factor (SCF) promoted the viability of a higher number of Lin-Sca-1+ progenitor cells when incubated for 40 hours. However, after prolonged (> 40 hours) preincubation, the viability-promoting effect of Tpo was similar to that of SCF. An increased number of progenitors surviving in response to Tpo had megakaryocyte potential (37%), although almost all of the progenitors produced other myeloid cell lineages as well, suggesting that Tpo acts to promote the viability of multipotent progenitors. The ability of Tpo to promote viability of Lin-Sca-1+ progenitor cells was observed when cells were plated at a concentration of 1 cell per well in fetal calf serum-supplemented and serum-depleted medium. Finally, the DNA strand breakage elongation assay showed that Tpo inhibits apoptosis of Lin-Sca-1+ bone marrow cells. Thus, Tpo has a potent ability to promote the viability and suppress apoptosis of primitive multipotent progenitor cells.

Cardier JE, Foster DC, Lok S, Jacobsen SE, Murphy MJ. 1996. Megakaryocytopoiesis in vitro: from the stem cells' perspective. Stem Cells, 14 Suppl 1 (S1), pp. 163-172. | Show Abstract | Read more

Megakaryocytopoiesis is a complex network regulated by different megakaryocyte (MK)-stimulating factors (i.e., thrombopoietin [TPO], stem cell factor [SCF], interleukin 3 [IL-3], IL-6, IL-11 and GM-CSF). Although all of these factors can affect human and murine megakaryocytopoiesis at different levels of MK development, the effect on very primitive hematopoietic stem cells (HSC) is not well understood. We have further characterized the in vitro biological activity of recombinant murine TPO, SCF and IL-3 on the maturation and proliferation of MK progenitors from different murine primitive hematopoietic cells in a fibrin clot system under serum-free conditions. Neither TPO nor SCF alone induced MK colony formation (CFU-MK) from Lin- Sca+ cells. However, isolated large and mature MKs were observed in the presence of TPO. In contrast, IL-3 exerted a potent effect on CFU-MK formation from Lin- Sca+ cells. On this population of HSC, a significant increase of large MK colonies with mature MK were obtained under those conditions in which TPO was combined with IL-3 or SCF plus IL-3. Similar results were obtained with murine bone marrow cells enriched by primitive progenitors from day 3 post-5-fluorouracil treated mice (5-FUBMC). In contrast, TPO-sensitive precursors were detected in fetal liver cells (FLC). These cells differentiate and proliferate to MK progenitors in the presence of TPO. A significant increase in the number of CFU-MK was induced when TPO was combined with either IL-3 or SCF. On these populations of primitive hematopoietic progenitors, IL-3 induced both the proliferation and differentiation of MK progenitors. Because erythropoietin and TPO share similarities between their molecules and their receptors, we studied whether these growth factors may modulate megakaryocytopoiesis from FLC. Flow cytometry analysis of FLC expressing erythroid markers demonstrated that these cells expressed c-Mpl receptor. In our in vitro studies, although EPO by itself did not induce MK colonies from FLC, it enhanced the proliferative activity of TPO. High ploidy and proplatelet-shedding MK were observed in Lin- Sca+ cells, 5-FUBMC and FLC stimulated with TPO alone or in combination with other MK-stimulating factors. Based on these observations, we propose that TPO, IL-3 and SCF constitute early MK-acting factors with differential proliferative and differentiative activities on murine stem cells. TPO by itself does not appear to be involved in the proliferation of MK progenitors from bone marrow HSC. TPO appears to induce in these cells the commitment toward MK differentiation. However, this growth factor may enhance the proliferative activity of IL-3. IL-3 is an early MK-stimulating factor able to induce in vitro the proliferation and differentiation of MK progenitors from HSC.

Veiby OP, Lyman SD, Jacobsen SE. 1996. Combined signaling through interleukin-7 receptors and flt3 but not c-kit potently and selectively promotes B-cell commitment and differentiation from uncommitted murine bone marrow progenitor cells. Blood, 88 (4), pp. 1256-1265. | Show Abstract

Multiple cytokines can synergize to stimulate the in vitro proliferation and exclusive myeloid differentiation of multipotent bone marrow progenitor cells. The ligand for c-kit (stem cell factor [SCF]) plays a key role in stimulating myeloid and erythroid cell production of primitive hematopoietic progenitors. SCF in combination with interleukin-7 (IL-7) can also stimulate the combined myeloid and B-cell differentiation of uncommitted hematopoietic progenitor cells as well as the growth of early B-cell progenitor cells, although the involvement of c-kit in early B lymphopoiesis remains controversial. In the present study, the flt3-ligand (FL), which, in combination with other cytokines, has overlapping activities with SCF on myeloid cell production from uncommitted progenitors, was investigated for its ability to induce selective stroma-independent B-cell commitment from uncommitted Lin-Sca-1+ bone marrow progenitor cells. IL-7 alone did not induce any clonal growth and FL alone gave rise to a few clusters (< 50 cells) but no colonies (> 50 cells), whereas the combined stimulation with FL and IL-7 resulted in clonal growth of 10% of Lin-Sca-1+ bone marrow cells. After 12 days of incubation of Lin-Sca-1+ cells in FL + IL-7, an almost 400-fold increase in cell production was observed. Phenotyping showed that greater than 99% of the cells produced were of the B-cell lineage, in that they expressed B220, but not cell surface markers specific for myeloid, erythroid, or T-cell lineages. Furthermore, the cells did not express cytoplasmic mu-heavy chain (cmu) or surface IgM, but were positive for CD24 (heat stable antigen [HSA]) and CD43 (leukosialin), suggesting that the cells produced were blocked at a late pro-B-cell stage. Interestingly, although all FL + IL-7-responsive Lin-Sca-1+ progenitor cells and the resulting pro-B cells expressed c-kit, FL + IL-7 was much more potent (62-fold) than SCF + IL-7 in stimulating production of cells of the B-cell lineage. In addition, whereas FL + IL-7 selectively stimulated the production of pro-B cells, SCF + IL-7 predominantly stimulated the production of mature granulocytes. Replating studies showed that FL + IL-7-responsive Lin-Sca-1+ progenitors were not committed to the B-cell lineage, because after 2 days of incubation in FL + IL-7, 80% of the progenitors retained a myeloid potential. As much as 27% of the FL + IL-7-responsive progenitors remained uncommitted after 7 days of incubation, but all had committed to the B-cell lineage after 10 days of incubation in FL + IL-7. These results show that FL much more potently and selectively than SCF synergizes with IL-7 to enhance B-cell commitment and development from uncommitted progenitor cells.

Jacobsen SE, Veiby OP, Myklebust J, Okkenhaug C, Lyman SD. 1996. Ability of flt3 ligand to stimulate the in vitro growth of primitive murine hematopoietic progenitors is potently and directly inhibited by transforming growth factor-beta and tumor necrosis factor-alpha. Blood, 87 (12), pp. 5016-5026. | Show Abstract

The recently cloned flt3 ligand (FL) stimulates the growth of primitive hematopoietic progenitor cells through synergistic interactions with multiple other cytokines. The present study is the first demonstrating cytokines capable of inhibiting FL-stimulated hematopoietic cell growth. Tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta 1 (TGF-beta l) potently inhibited the clonal growth of murine Lin-Sca-l+ bone marrow progenitors stimulated by FL alone or in combination with granulocyte colony-stimulating factor (G-CSF), stem cell factor (SCF), interleukin (IL)-3, IL-6, IL-11, or IL-12. TGF-beta 1 inhibited more than 96% of the myeloid colony formation in response to these cytokine combinations, whereas TNF-alpha reduced the number of colonies by 58% to 96% depending on the cytokine by which FL was combined. In addition, both TNF-alpha and TGF-beta 1 inhibited more than 90% of B220+ cell production from B220- bone marrow cells stimulated by FL + IL-7. The effects of TNF-alpha and TGF-beta 1 appeared to be due to a direct effect and on the early progenitors because the inhibition was observed at the single cell level, and because delayed addition of the two inhibitors for only 48 hours dramatically reduced their inhibitory effects. A neutralizing anti-TGF-beta antibody showed the presence of endogenous TGF-beta in the cultures and potently enhanced the ability of FL to stimulate progenitor cell growth in the absence of other cytokines. Agonistic antibodies specifically activating the p75 TNF receptors were more efficient than wild type murine TNF-alpha in signaling growth inhibition of Lin-Sca-l+ progenitor cells, whereas the p55 agonist had less effect than murine TNF-alpha. Finally, TGF-beta increased the number of FL + IL-11-stimulated Lin-Sca-1+ cells in the G1 phase of the cell cycle with 76%, whereas TNF-alpha only had a marginal effect on cell cycle distribution. Thus, TGF-beta, TNF-alpha, and p75 TNF receptor agonists are potent direct inhibitors of FL-stimulated progenitor cell growth in vitro.

Rusten LS, Lyman SD, Veiby OP, Jacobsen SE. 1996. The FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34+ bone marrow progenitor cells in vitro. Blood, 87 (4), pp. 1317-1325. | Show Abstract

The present studies investigated the effects of the recently cloned flt3 ligand (FL) on the in vitro growth and differentiation of primitive and committed subsets of human CD34+ bone marrow (BM) progenitor cells. FL alone was a weak growth stimulator of CD34+ BM cells, but synergistically and directly enhanced colony formation in combination with interleukin (IL) 3, granulocyte colony-stimulating factor (G-CSF), CSF-1, granulocyte macrophage (GM) CSF stem cell factor (SCF), and IL-6. FL and SCF were equally effective in stimulating colony formation in combination with IL-3. However, the tri-factor combination of FL + IL-3 + SCF stimulated 2.3-fold and 2.5-fold more colonies than FL + IL-3 and SCF + IL-3, respectively. These additional recruited progenitors appeared to be predominantly located in a primitive (CD71-) subset of the CD34+ progenitors, as 4.5-fold more colonies were formed by CD34+CD71- cells in response to FL + IL-3 + SCF than to FL + IL-3 or SCF + IL-3. Similar findings were observed in serum-containing and serum-deprived cultures. Whereas FL did not enhance burst-forming unit-erythroid (BFU-E) colony formation of CD34+ BM cells in the presence of serum, a low number of BFU-E colonies were formed in response to FL plus erythropoietin (Epo) under serum-deprived conditions. In addition, FL both in serum-containing and serum-deprived cultures stimulated colony formation of more committed myeloid progenitors in CD34+CD71+ BM cells. Thus, FL potently stimulates the growth of primitive and more committed human BM progenitor cells.

Rusten LS, Dybedal I, Blomhoff HK, Blomhoff R, Smeland EB, Jacobsen SE. 1996. The RAR-RXR as well as the RXR-RXR pathway is involved in signaling growth inhibition of human CD34+ erythroid progenitor cells. Blood, 87 (5), pp. 1728-1736. | Show Abstract

Previous studies have shown that retinoic acid (RA), similar to tumor necrosis factor-alpha (TNF-alpha), can act as a bifunctional regulator of the growth of bone marrow progenitors, in that it can stimulate granulocyte-macrophage colony-stimulating factor (GM-CSF)- or interleukin-3 (IL-3)-induced GM colony formation, but potently inhibit G-CSF-induced growth. The present study, using highly enriched human CD34+ as well as Lin- murine bone marrow progenitor cells, demonstrates a potent inhibitory effect of 9-cis-RA on burst-forming unit-erythroid (BFU-E) colony formation regardless of the cytokine stimulating growth. Specifically, 9-cis-RA potently inhibited the growth of BFU-E response to erythropoietin (Epo) (100%), stem cell factor (SCF) + Epo (92%), IL-3 + Epo (97%), IL-4 + Epo (88%), and IL-9 + Epo (100%). Erythroid colony growth was also inhibited when CD34+ progenitors were seeded at one cell per well, suggesting a direct action of RA. Using synthetic ligands to retinoic acid receptors (RARs) and retinoid X receptors (RXRs) that selectively bind and activate RAR-RXR or RXR-RXR dimers, respectively, we dissected the involvement of the two retinoid response pathways in the regulation of normal myeloid and erythroid progenitor cell growth. Transactivation studies showed that both the RAR (Ro 13-7410) and RXR (Ro 25-6603 and Ro 25-7386) ligands were highly selective at 100 nmol/L. At this concentration, Ro 13-7410 potently inhibited G-CSF-stimulated myeloid as well as SCF + Epo-induced erythroid colony growth. At the same concentration, Ro 25-6603 and Ro 25-7386 had little or no effect on G-CSF-induced colony formation, whereas they inhibited 75% and 53%, respectively, of SCF + Epo-stimulated BFU-E colony growth. Thus, the RAR-RXR response pathway can signal growth inhibition of normal bone marrow myeloid and erythroid progenitor cells. In addition, we demonstrate a unique involvement of the RXR-RXR pathway in mediating growth inhibition of erythroid but not myeloid progenitor cells.

Jacobsen SE. 1995. IL12, a direct stimulator and indirect inhibitor of haematopoiesis. Res Immunol, 146 (7-8), pp. 506-514. | Read more

Jacobsen FW, Stokke T, Jacobsen SE. 1995. Transforming growth factor-beta potently inhibits the viability-promoting activity of stem cell factor and other cytokines and induces apoptosis of primitive murine hematopoietic progenitor cells. Blood, 86 (8), pp. 2957-2966. | Show Abstract

In contrast with the extensively characterized effects of transforming growth factor-beta (TGF-beta) on proliferation and differentiation of hematopoietic progenitors, little is known about the effects of TGF-beta on viability of normal hematopoietic progenitors. In the present report, we demonstrate that TGF-beta potently counteracts hematopoietic growth factor (HGF)-induced survival of individually cultured primitive Lin-Sca-1+ bone marrow progenitors. Specifically, 74% of single Lin-Sca-1+ cells cultured for 40 hours in the presence of stem cell factor (SCF) survived, whereas only 16% survived in the presence of SCF plus TGF-beta. Similarly, the enhanced survival of primitive hematopoietic progenitors in response to granulocyte colony-stimulating factor (G-CSF), interleukin (IL)-1, IL-6, or IL-11 was also potently opposed by TGF-beta. Furthermore, it is demonstrated that neutralization of endogenous TGF-beta present in the cultures enhances survival of Lin-Sca-1+ progenitors in the absence, as well as in the presence, of HGFs such as SCF and IL-6. The reduced HGF-induced survival of primitive hematopoietic progenitors in the presence of TGF-beta was associated with increased apoptosis, as detected by an in situ terminal deoxynucleotidyl transferase (TdT) assay. After 16 hours of incubation in the absence of HGFs, 61% +/- 6% of the hematopoietic progenitors had DNA strand breaks characteristic of apoptosis. The presence of SCF reduced the frequency of apoptic cells to 27% +/- 5%, whereas 55% +/- 3% of the cells had signs of apoptosis in the presence of SCF plus TGF-beta.

Wang Y, Garg M, Guan F, Dai W, Jacobsen S, Murphy M. 1995. Retinoic Acid potently stimulates the production of granulocyte-colony-stimulating factor in the human monocytic thp-1 cell-line. Int J Oncol, 7 (1), pp. 45-50. | Show Abstract

Lipopolysaccharide (LPS) potently induces the production of several cytokines in THP-1 cells pretreated with phorbol 12-myristate 13-acetate (PMA). We report that all-trans retinoic acid (tRA) synergizes with LPS to enhance the production of granulocyte colony-stimulating factor (G-CSF) in PMA-treated cells, whereas the production of granulocyte-macrophage CSF, interleukin 1-beta (IL-1-beta), and tumor necrosis factor-alpha (TNF-alpha) is minimally affected by tRA. The interaction between LPS and tRA on G-CSF production is not due to IL-1-beta or TNF-alpha present in the culture medium during LPS and tRA treatment because neutralization of n-1-beta and TNF-alpha activity does not inhibit the synergy between LPS and tRA. However, exogenous IL-1-beta, but not TNF-alpha, also synergizes with tRA on G-CSF production, suggesting that LPS and IL-l-beta can independently interact with tRA to stimulate G-CSF production.

Fahlman C, Jacobsen SE, Smeland EB, Lømo J, Naess CE, Funderud S, Blomhoff HK. 1995. All-trans- and 9-cis-retinoic acid inhibit growth of normal human and murine B cell precursors. J Immunol, 155 (1), pp. 58-65. | Show Abstract

In the present paper we demonstrate that physiologic levels (10 nM) of both all-trans- and 9-cis-retinoic acid (RA) are potent inhibitors of the growth of human as well as murine B cell precursors in vitro. Ten nanomolar concentrations of all-trans- and 9-cis-RA reduced the DNA synthesis ([3H]thymidine uptake) of human B cell precursors (CD19+ IgM-) stimulated with O-tetradecanoylphorbol-13-acetate and ionomycin by approximately 55% and 70%, respectively. Human B cell precursors stimulated with low m.w. B cell growth factor were also inhibited by RA. Ten nanomolar concentrations of either isoform of RA reduced DNA synthesis by approximately 50%. No effect of RA on differentiation to sIgM positive cells was noted. The potent growth-inhibiting effect of RA on human B cell precursors was confirmed in the murine cell system. B lymphopoiesis from murine hematopoietic precursors (Lin-B220(+)-containing cells) was induced by stimulation with IL-7. Concentrations of all-trans- and 9-cis-RA as low as 10 pM reduced the colony-forming ability of the IL-7-stimulated Lin-B220(+)-containing cells. Ten nanomolar concentrations of either isoform reduced colony formation by approximately 60%. RA was not toxic to the cells, as the inhibition of colony formation after 24 h was reversible at concentrations as high as 1 microM. The growth-inhibiting effect of RA was directly mediated, as revealed by single cell analysis of the Lin-B220(+)-containing cells. Thus, vitamin A appears to have an important role in regulation of B lymphopoiesis.

Dybedal I, Jacobsen SE. 1995. Transforming growth factor beta (TGF-beta), a potent inhibitor of erythropoiesis: neutralizing TGF-beta antibodies show erythropoietin as a potent stimulator of murine burst-forming unit erythroid colony formation in the absence of a burst-promoting activity. Blood, 86 (3), pp. 949-957. | Show Abstract

Transforming growth factor beta (TGF-beta) is a bifunctional regulator of the growth of myeloid progenitors and is here demonstrated to directly inhibit the growth of primitive erythroid progenitors by 95% to 100% regardless of the cytokines stimulating growth. Autocrine TGF-beta production of primitive hematopoietic progenitors has previously been reported. In the present study, a neutralizing TGF-beta antibody (anti-TGF-beta) added to serum-containing cultures, resulted in a 3-, 4-, and 25-fold increase in burst-forming unit erythroid (BFU-E) colony formation in response to interleukin-4 (IL-4) plus erythropoietin (Epo), SCF plus Epo, and IL-11 plus Epo, respectively. The growth of BFU-E progenitors has been suggested to require a burst-promoting activity in addition to Epo. Accordingly, we observed no BFU-E colony formation in serum-containing cultures in response to Epo alone. In contrast, 50 BFU-E colonies were formed when anti-TGF-beta was included in the culture. In serum-free cultures, Epo also stimulated BFU-E colony formation in the absence of other cytokines, whereas anti-TGF-beta had no effect on the number of colonies formed. Quantitation of TGF-beta 1 in serum by an enzyme-linked immunosorbent assay method showed predominantly the presence of precursor (latent) TGF-beta 1, but also showed active TGF-beta 1 at a concentration sufficient to potently inhibit erythroid colony formation. Thus, neutralization of active TGF-beta 1 in serum shows that Epo alone is sufficient to stimulate the growth of murine BFU-E progenitors.

Jacobsen SE, Okkenhaug C, Myklebust J, Veiby OP, Lyman SD. 1995. The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors. J Exp Med, 181 (4), pp. 1357-1363. | Show Abstract | Read more

The recently cloned murine flt3 ligand (FL) was studied for its ability to stimulate the growth of primitive (Lin-Sca-1+) and more committed (Lin-Sca-1-) murine bone marrow progenitor cells, alone and in combination with other hematopoietic growth factors (HGFs). Whereas FL was a weak proliferative stimulator alone, it potently synergized with a number of other HGFs, including all four colony-stimulating factor (CSF), interleukin (IL) 6, IL-11, IL-12, and stem cell factor (SCF), to promote the colony formation of Lin-Sca-1+, but not Lin-Sca-1- or erythroid progenitor cells. The synergistic activity of FL was concentration dependent, with maximum stimulation occurring at 250 ng/ml, and was observed when cells were plated at a concentration of one cell per culture, suggesting that its effects are directly mediated. 2 wk of treatment with FL in combination with IL-3 or SCF resulted in the production of a high proportion of mature myeloid cells (granulocytes and macrophages), whereas the combination of FL with G-CSF, IL-11, or IL-12 resulted predominantly in the formation of cells with an immature blast cell appearance. Accordingly, FL in combination with G-CSF or IL-11 expanded the number of progenitors more than 40-fold after 2 wk incubation. Thus, FL emerges as a potent synergistic HGF, that in combination with numerous other HGFs, can directly stimulate the proliferation, myeloid differentiation, and expansion of primitive hematopoietic progenitor cells.

Jacobsen FW, Dubois CM, Rusten LS, Veiby OP, Jacobsen SE. 1995. Inhibition of stem cell factor-induced proliferation of primitive murine hematopoietic progenitor cells signaled through the 75-kilodalton tumor necrosis factor receptor. Regulation of c-kit and p53 expression. J Immunol, 154 (8), pp. 3732-3741. | Show Abstract

TNF-alpha is a pleiotropic cytokine with stimulatory as well as inhibitory effects on hematopoiesis. We have previously demonstrated that TNF-alpha directly inhibits CSF-induced proliferation of primitive murine lineage-negative bone marrow progenitors (Lin-) and stem cell antigen-1 hematopoietic progenitors through the 75-kDa TNF receptor (TNF-R2), whereas TNF-alpha-induced inhibition of more committed Lin- progenitors is mediated through the 55-kDa TNF-R (TNF-R1), indicating a differential role of the two TNF-Rs in hematopoiesis. Numerous studies have demonstrated the ability of stem cell factor (SCF), a key regulator of hematopoiesis signaling through c-kit, to synergize with other hematopoietic growth factors, but little is known about cytokines capable of inhibiting hematopoiesis induced by SCF. While TNF-alpha has been demonstrated to enhance SCF-induced proliferation of myeloid leukemia blasts, the present report demonstrates that TNF-alpha, by signaling through TNF-R2, inhibits SCF-induced proliferation of normal murine Lin- and stem cell antigen-1 hematopoietic progenitors. SCF-stimulated proliferation of the hematopoietic cell line FDC-P1 was also potently inhibited by TNF-alpha and was accompanied by down-regulation of c-kit cell surface expression as well as c-kit mRNA levels. Finally, treatment of the FDC-P1 cell line with TNF-alpha resulted in increased levels of the tumor suppressor p53 mRNA, suggesting another mechanism by which hematopoietic effects of TNF-alpha may be mediated.

Rusten LS, Jacobsen SE. 1995. Tumor necrosis factor (TNF)-alpha directly inhibits human erythropoiesis in vitro: role of p55 and p75 TNF receptors. Blood, 85 (4), pp. 989-996. | Show Abstract

Two tumor necrosis factor receptors (TNFRs) with molecular weights of 55 kD (TNFR-p55) and 75 kD (TNFR-p75) have recently been identified and cloned. In previous studies, TNFR-p55 has been shown to exclusively mediate bidirectional effects of TNF-alpha on committed bone marrow granulocyte-macrophage progenitor cells, whereas both TNFR-p55 and TNFR-p75 can mediate inhibition of primitive progenitors requiring multiple cytokines to proliferate. We show here that TNF-alpha potently and directly inhibits the in vitro growth of committed erythroid progenitor cells in response to multiple cytokine combinations, and that TNF-alpha-induced inhibition of burst-forming unit-erythroid colony formation is mainly mediated through TNFR-p55, although TNFR-p75-mediated inhibition could be observed on progenitors responsive to erythropoietin alone. Moreover, at low TNF-alpha concentrations (2 ng/mL), TNF-alpha stimulates interleukin-3-dependent in vitro growth of committed granulocyte-macrophage progenitor cells, whereas it potently inhibits erythroid progenitor cell proliferation, showing that one concentration of TNF-alpha can simultaneously and bidirectionally modulate interleukin-3-dependent growth of committed granulocyte-macrophage (stimulation) and erythroid progenitor cells (inhibition).

Jacobsen FW, Keller JR, Ruscetti FW, Veiby OP, Jacobsen SE. 1995. Direct synergistic effects of IL-4 and IL-11 on proliferation of primitive hematopoietic progenitor cells. Exp Hematol, 23 (9), pp. 990-995. | Show Abstract

The present studies have investigated, for the first time, the synergistic effects of interleukin-4 (IL-4) and IL-11 on the growth of single murine bone marrow progenitor cells. These studies suggest that IL-4 and IL-11 are synergistic hematopoietic growth factors, enhancing colony formation of bone marrow progenitors from normal mice in the presence of colony-stimulating factors or stem cell factor, whereas neither IL-4 nor IL-11, alone or in combination, resulted in colony formation. However, in the presence of a neutralizing anti-TGF-beta antibody, IL-11 plus IL-4 induced clonal growth of primitive Lin-Sca1+ progenitors. Furthermore, here we report several observations extending the knowledge about IL-4 and IL-11 as synergistic factors. In addition to the established ability of IL-11 to enhance IL-3- and GM-CSF-induced colony formation, IL-11 also enhanced the number of G-CSF- and CSF-1-stimulated colonies of mature (Lin-) and primitive (Lin-Sca-1+) hematopoietic progenitors cultured at the single-cell level. In contrast, IL-4 bifunctionally regulated the growth of Lin- progenitors, whereas the growth of single Lin-Sca=1+ progenitors was unaffected or enhanced in the presence of IL-4. Finally, IL-4 and IL-11, in combination, potently synergized to enhance the high-proliferative-potential colony-forming cell colony formation of Lin-Sca-1+ progenitors in response to all four CSFs and to SCF.

Smeland EB, Rusten L, Jacobsen SE, Skrede B, Blomhoff R, Wang MY, Funderud S, Kvalheim G, Blomhoff HK. 1994. All-trans retinoic acid directly inhibits granulocyte colony-stimulating factor-induced proliferation of CD34+ human hematopoietic progenitor cells. Blood, 84 (9), pp. 2940-2945. | Show Abstract

In this study we examine the effects of retinoids on purified CD34+ human hematopoietic progenitor cells. All-trans retinoic acid inhibited granulocyte colony-stimulating factor (G-CSF)-induced proliferation of CD34+ cells in short-term liquid cultures in a dose-dependent fashion with maximal inhibition of 72% at a concentration of retinoic acid of 1 mumol/L. Although no significant effects were observed on granulocyte-macrophage CSF (GM-CSF)--interleukin-3--or stem cell factor (SCF)-induced proliferation, the combinations of G-CSF and each of these cytokines were all inhibited. Moreover, retinol (3 mumol/L) and chylomicron remnant retinyl esters (0.1 mumol/L) in concentrations normally found in human plasma also had inhibitory effects. Single-cell experiments showed that the effects of retinoic acid were directly mediated. Retinoids also significantly inhibited G-CSF-induced colony formation in semisolid medium, with 88% inhibition observed at a concentration of retinoic acid of 1 mumol/L. However, we did not observe any effects of retinoic acid on G-CSF-induced differentiation as assessed by morphology and flowcytometry. Similar to previous findings using total bone marrow mononuclear cells, we observed a stimulation of GM-CSF-induced colony formation after 14 days. We also observed a stimulatory effect of low doses of retinoic acid (30 nmol/L) on blast-cell colony formation on stromal cell layers. Taken together, the data indicate that vitamin A present in human plasma has inhibitory as well as stimulatory effects on myelopoiesis.

Keller JR, Bartelmez SH, Sitnicka E, Ruscetti FW, Ortiz M, Gooya JM, Jacobsen SE. 1994. Distinct and overlapping direct effects of macrophage inflammatory protein-1 alpha and transforming growth factor beta on hematopoietic progenitor/stem cell growth. Blood, 84 (7), pp. 2175-2181. | Show Abstract

Both transforming growth factor beta (TGF beta) and macrophage inflammatory protein 1 alpha (MIP-1 alpha) have been shown to be multifunctional regulators of hematopoiesis that can either inhibit or enhance the growth of hematopoietic progenitor cells (HPC). We report here the spectrum of activities of these two cytokines on different hematopoietic progenitor and stem cell populations, and whether these effects are direct or indirect. MIP-1 alpha enhances interleukin-3 (IL-3)/and granulocyte-macrophage colony-stimulating factor (GM-CSF)/induced colony formation of normal bone marrow progenitor cells (BMC) and lineage-negative (Lin-) progenitors, but has no effect on G-CSF or CSF-1/induced colony formation. Similarly, TGF beta enhances GM-CSF/induced colony formation of normal BMC and Lin- progenitors. In contrast, TGF beta inhibits IL-3/ and CSF-1/induced colony formation of Lin- progenitors. The effects of MIP-1 alpha and TGF beta on the growth of Lin- progenitors were direct and correlate with colony formation in soft agar. Separation of the Lin- cells into Thy-1 and Thy-1lo subsets showed that the growth of Thy-1lo Lin- cells is directly inhibited by MIP-1 alpha and TGF beta regardless of the cytokine used to stimulate growth (IL-3), GM-CSF, or CSF-1). In contrast, two other stem cell populations (0% to 15% Höechst 33342/Rhodamine 123 [Hö/Rh123] and Lin-Sca-1+ cells) were markedly inhibited by TGF beta and unaffected by MIP-1 alpha. Furthermore, MIP-1 alpha has no effect on high proliferative potential colony-forming cells 1 or 2 (HPP-CFC/1 or /2) colony formation in vitro, whereas TGF beta inhibits both HPP-CFC/1 and HPP-CFC/2. Thus, MIP-1 alpha and TGF beta are direct bidirectional regulators of HPC growth, whose effects are dependent on other growth factors present as well as the maturational state of the HPC assayed. The spectrum of their inhibitory and enhancing activities shows overlapping yet distinct effects.

Jacobsen FW, Rothe M, Rusten L, Goeddel DV, Smeland EB, Veiby OP, Slørdal L, Jacobsen SE. 1994. Role of the 75-kDa tumor necrosis factor receptor: inhibition of early hematopoiesis. Proc Natl Acad Sci U S A, 91 (22), pp. 10695-10699. | Show Abstract | Read more

Biological effects of tumor necrosis factor alpha (TNF-alpha) are mediated through two cell surface receptors, the 55-kDa TNF receptor and the 75-kDa TNF receptor. The present study investigated the relative roles of the two TNF receptors in normal hematopoiesis. Using agonists (antibodies) specific for the 55- and 75-kDa TNF receptors, we demonstrate differential roles of the two TNF receptors in hematopoiesis in that only the 55-kDa TNF receptor mediates antiproliferative effects of TNF-alpha on mature Lin- hematopoietic progenitor cells responding to granulocyte colony-stimulating factor or interleukin 3 alone. In contrast, the 75-kDa TNF receptor is essential in mediating inhibition of primitive Lin-Sca-1+ high-proliferative-potential colony-forming cells and inhibition of the total number of proliferative clones of individually cultured Lin-Sca-1+Rh123lo and Lin-Sca-1+Rh123hi cells.

Jacobsen SE, Ruscetti FW, Ortiz M, Gooya JM, Keller JR. 1994. The growth response of Lin-Thy-1+ hematopoietic progenitors to cytokines is determined by the balance between synergy of multiple stimulators and negative cooperation of multiple inhibitors. Exp Hematol, 22 (10), pp. 985-989. | Show Abstract

The present studies investigated the balance of positive and negative growth signals in direct regulation of hematopoiesis. Interleukin-3 (IL-3) combined with Steel factor (SLF) optimally stimulated proliferation of Lin-Thy-1+ murine bone marrow progenitors in single-cell assays, and that proliferation was inhibited more than 90% by transforming growth factor-beta 1 (TGF-beta 1). Colony-stimulating factor-1 (CSF-1), granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-1, or IL-6 as a third stimulatory growth factor was incapable of counteracting the TGF-beta 1-mediated inhibition of IL-3-plus-SLF-stimulated growth, while G-CSF slightly enhanced the number of TGF-beta 1-resistant clones. As a fourth factor, only IL-1 could partially overcome the TGF-beta 1-induced growth inhibition. While the presence of a cocktail of five additional stimulatory growth factors did not enhanced the frequency of single Lin-Thy-1+ progenitors proliferating in response to IL-3 plus SLF, the number of responding progenitors in the presence of TGF-beta 1 was enhanced nine-fold. Furthermore, tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma), but not macrophage inflammatory protein-1 alpha (MIP-1 alpha), cooperated with TGF-beta 1 to reverse the proliferative effects of multiple stimulatory cytokines, resulting in 76% inhibition. Thus, the direct effects of single inhibitory factors on hematopoietic progenitor cell growth can be reversed by multiple stimulatory growth factors, and negative growth factors can directly cooperate to suppress progenitor cell growth stimulated by multiple positive-acting factors.

Jacobsen SE, Ruscetti FW, Okkenhaug C, Lien E, Ortiz M, Veiby OP, Keller JR. 1994. Distinct and direct synergistic effects of IL-1 and IL-6 on proliferation and differentiation of primitive murine hematopoietic progenitor cells in vitro. Exp Hematol, 22 (11), pp. 1064-1069. | Show Abstract

While interleukin-1 (IL-1) and IL-6 have been demonstrated to synergize with colony-stimulating factors (CSFs) and stem cell factor (SCF) to stimulate myeloid colony formation of primitive hematopoietic progenitor cells, it has not yet been established whether these effects are directly mediated. In the present study, direct effects of IL-1 and IL-6 were examined on primitive Lin-Sca-1+ murine bone-marrow progenitor cells that were cultured and plated individually. IL-1 and IL-6 showed not only overlapping, but also distinct, patterns of direct synergy. While IL-1 or IL-6 had no proliferative effects as single growth factors, IL-1, in combination with granulocyte-macrophage CSF (GM-CSF), IL-3, CSF-1, and SCF, but not granulocyte-CSF (G-CSF), enhanced the cloning frequency of Lin-Sca-1+ progenitors three- to five-fold, whereas IL-6 increased the cloning frequency in response to all four CSFs and SCF two- to seven-fold. In all cases, the size of the colonies observed were increased as well. Furthermore, the combined action of IL-1 and IL-6 resulted in additive or synergistic enhancement of CSF- and SCF-stimulated colony formation of Lin-Sca-1+ high proliferative potential colony-forming cells (HPP-CFCs). Finally, IL-6, but not IL-1, enhanced the number of immature blast cells observed in CSF- and SCF-stimulated cultures.

Rusten LS, Jacobsen SE, Kaalhus O, Veiby OP, Funderud S, Smeland EB. 1994. Functional differences between CD38- and DR- subfractions of CD34+ bone marrow cells. Blood, 84 (5), pp. 1473-1481. | Show Abstract

Several studies have previously demonstrated enrichment in primitive progenitor cells in subfractions of CD34+ bone marrow (BM) cells not expressing CD38 or HLA-DR (DR) antigens. However, no studies have directly compared these two cell populations with regard to their content of primitive and more committed progenitor cells. Flow cytometric analysis of immunomagnetic isolated CD34+ cells demonstrated little overlap between CD34+CD38- and CD34+DR- progenitor subpopulations in that only 12% to 14% of total CD34+DR- and CD34+CD38- cells were double negative (CD34+CD38-DR-). Although the number of committed myeloid progenitor cells (colony-forming units granulocyte-macrophage) was reduced in both subpopulations, only CD34+CD38- cells were significantly depleted in committed erythroid progenitor cells (burst-forming units-erythroid). In single-cell assay, CD34+CD38- cells showed consistently poorer response to single as opposed to multiple hematopoietic growth factors as compared with unfractionated CD34+ cells, indicating that the CD34+CD38- subset is relatively enriched in primitive hematopoietic progenitor cells. Furthermore, CD34+CD38- and CD34+DR- cells, respectively, formed 3.2-fold and 1.6-fold more high proliferative potential colony-forming cell (HPP-CFC) colonies than did unfractionated CD34+ cells. Finally, CD34+CD38-DR- cells were depleted in HPP-CFCs as compared with CD34+CD38+DR+ cells. The results of the present study suggest that both the CD38- and DR- subfractions of CD34+ bone marrow cells are enriched in primitive hematopoietic progenitor cells, with the CD34+CD38- subpopulation being more highly enriched than CD34+DR- cells.

Fahlman C, Jacobsen FW, Veiby OP, McNiece IK, Blomhoff HK, Jacobsen SE. 1994. Tumor necrosis factor-alpha (TNF-alpha) potently enhances in vitro macrophage production from primitive murine hematopoietic progenitor cells in combination with stem cell factor and interleukin-7: novel stimulatory role of p55 TNF receptors. Blood, 84 (5), pp. 1528-1533. | Show Abstract

Tumor necrosis factor-alpha (TNF-alpha) is a bifunctional regulator of hematopoiesis, and its cellular responses are mediated by two distinct cell surface receptors. TNF-alpha generally inhibits the growth of primitive murine hematopoietic progenitor cells (Lin-Scal+) in response to multiple cytokine combinations, and the p75 TNF receptor is essential in signaling such inhibition. In the present study we show the reverse phenomenon in that TNF-alpha on the same progenitor cell population in combination with stem cell factor (SCF) and interleukin-7 (IL-7) through the p55 TNF receptor can recruit additional progenitors to proliferate. In contrast, TGF-beta 1, another bifunctional regulator of hematopoietic progenitor cell growth, completely blocked SCF plus IL-7-induced proliferation. TNF-alpha increased the number of responding progenitors, as well as the size of the colonies formed. The synergistic effects of TNF-alpha were seen at the single cell level, suggesting that its effects are directly mediated. Finally, whereas SCF plus IL-7 promoted primarily granulopoiesis, the addition of TNF-alpha switched the differentiation toward the production of almost exclusively macrophages.

Fahlman C, Blomhoff HK, Veiby OP, McNiece IK, Jacobsen SE. 1994. Stem cell factor and interleukin-7 synergize to enhance early myelopoiesis in vitro. Blood, 84 (5), pp. 1450-1456. | Show Abstract

Interleukin-7 (IL-7) has been shown to be a critical factor in murine lymphoid development. It stimulates pre-B cells to divide in the absence of stroma cells and it is an important growth regulator of immature and mature T cells. IL-7 has been shown to synergize with stem cell factor (SCF) to provide a potent growth stimulus for pre-B cells. However, the combined effects of IL-7 and SCF on murine primitive hematopoietic cells in vitro have not been established. In the present study, the effects of recombinant rat (rr) SCF and recombinant human (rh) IL-7 on primitive murine bone marrow progenitors (Lin-Sca1+) were investigated in single-cell cloning experiments. rhIL-7 alone had no proliferative effect on Lin-Sca1+ cells, but in a dose-dependent manner directly enhanced rrSCF-induced colony formation, with an average increase in colony numbers of 2.7-fold. Interestingly, the cells formed in response to SCF and IL-7 were predominantly mature granulocytes. Thus, SCF and IL-7 synergize to stimulate early myelopoiesis in vitro.

Jacobsen FW, Veiby OP, Jacobsen SE. 1994. IL-7 stimulates CSF-induced proliferation of murine bone marrow macrophages and Mac-1+ myeloid progenitors in vitro. J Immunol, 153 (1), pp. 270-276. | Show Abstract

The role of IL-7 as an important stimulator of the growth of B and T cell precursors, as well as mature T cells, is well established. In contrast, the role of IL-7 in myelopoiesis has not been characterized thoroughly, and thus, IL-7 has been regarded as a lymphoid lineage-restricted cytokine. However, we have recently reported that IL-7 enhanced CSF-induced myeloid proliferation of primitive murine hematopoietic (Lin-Sca-1+) progenitors, whereas IL-7 did not affect significantly the proliferation of a population of more mature (Lin-) progenitors. The present study was initiated to investigate further whether IL-7 might affect CSF-induced proliferation of subpopulations of committed myeloid progenitors as well as mature bone marrow macrophages. IL-7 enhanced macrophage colony-stimulating factor (CSF-1)-induced colony formation of single bone marrow macrophages 90%, whereas IL-7 alone had no effect. Furthermore, IL-7, in a concentration-dependent manner, increased the proliferation of mononuclear cells expressing the Mac-1 Ag (Mac-1+ mononuclear cells (MNC); CD11b) up to fivefold in response to CSF-1, granulocyte macrophage-CSF (GM-CSF), or IL-3. In contrast, no effect of IL-7 was observed on Mac-1- MNC. The synergistic effect of IL-7 on Mac-1+ MNC was caused by an increase in macrophage colonies (CFU-M) and mixed granulocyte-macrophage colonies (CFU-GM), whereas the total number of granulocyte colonies (CFU-G) was not affected. This suggests that IL-7 can provide proliferative signals to Mac-1+ progenitors with a macrophage potential, but not to progenitors committed to pure granulocyte differentiation.

Jacobsen SE, Okkenhaug C, Veiby OP, Caput D, Ferrara P, Minty A. 1994. Interleukin 13: novel role in direct regulation of proliferation and differentiation of primitive hematopoietic progenitor cells. J Exp Med, 180 (1), pp. 75-82. | Show Abstract | Read more

The recently cloned interleukin 13 (IL-13) shares most investigated biological activities on B lymphocytes and monocytes with IL-4. In this study we investigated for the first time the potential role of IL-13 in the regulation of the growth of hematopoietic progenitor cells. IL-13 enhanced stem cell factor (SCF)-induced proliferation of Lin-Sca-1+ bone marrow progenitor cells more potently than IL-4. The effect of IL-13 was purely synergistic, since IL-13 alone stimulated no colony formation. Single cell experiments suggested that the synergistic effect of IL-13 on Lin-Sca-1+ progenitors was directly mediated. In contrast, IL-13 had no synergistic activity on SCF-induced proliferation of the more mature Lin-Sca-1- progenitor cells. Thus, the cloning frequency in response to SCF + IL-13 was at least 20-fold higher in the Lin-Sca-1+ than the Lin-Sca-1- progenitor cell population. Furthermore, IL-13 but not IL-4 synergistically enhanced colony formation of Lin-Sca-1+ progenitors in response to granulocyte/macrophage colony-stimulating factor (GM-CSF) (threefold), whereas both IL-4 and IL-13 enhanced G-CSF-induced colony formation (threefold), and neither of the two significantly affected CSF-1 and IL-3-induced proliferation. Finally, whereas stimulation of Lin-Sca-1+ progenitors by SCF + G-CSF resulted in the formation of 90% granulocytes, the addition of IL-13 resulted in the production of macrophages exclusively. This novel effect on differentiation was directly mediated, shared with IL-4, and could not be observed on Lin-Sca-1- progenitor cells. Collectively, these findings indicate a novel role of IL-13 in early myelopoiesis, partially overlapping but also different from that of IL-4.

Rusten LS, Smeland EB, Jacobsen FW, Lien E, Lesslauer W, Loetscher H, Dubois CM, Jacobsen SE. 1994. Tumor necrosis factor-alpha inhibits stem cell factor-induced proliferation of human bone marrow progenitor cells in vitro. Role of p55 and p75 tumor necrosis factor receptors. J Clin Invest, 94 (1), pp. 165-172. | Show Abstract | Read more

Stem cell factor (SCF), a key regulator of hematopoiesis, potently synergizes with a number of hematopoietic growth factors. However, little is known about growth factors capable of inhibiting the actions of SCF. TNF-alpha has been shown to act as a bidirectional regulator of myeloid cell proliferation and differentiation. This study was designed to examine interactions between TNF-alpha and SCF. Here, we demonstrate that TNF-alpha potently and directly inhibits SCF-stimulated proliferation of CD34+ hematopoietic progenitor cells. Furthermore, TNF-alpha blocked all colony formation stimulated by SCF in combination with granulocyte colony-stimulating factor (CSF) or CSF-1. The synergistic effect of SCF observed in combination with GM-CSF or IL-3 was also inhibited by TNF-alpha, resulting in colony numbers similar to those obtained in the absence of SCF. These effects of TNF-alpha were mediated through the p55 TNF receptor, whereas little or no inhibition was signaled through the p75 TNF receptor. Finally, TNF-alpha downregulated c-kit cell-surface expression on CD34+ bone marrow cells, and this was predominantly a p55 TNF receptor-mediated event as well.

Rusten LS, Jacobsen FW, Lesslauer W, Loetscher H, Smeland EB, Jacobsen SE. 1994. Bifunctional effects of tumor necrosis factor alpha (TNF alpha) on the growth of mature and primitive human hematopoietic progenitor cells: involvement of p55 and p75 TNF receptors. Blood, 83 (11), pp. 3152-3159. | Show Abstract

Tumor necrosis factor alpha (TNF alpha) has previously been reported to have both inhibitory and stimulatory effects on hematopoietic progenitor cells. Specifically, TNF alpha has been proposed to stimulate early hematopoiesis in humans. In the present study we show that TNF alpha, in a dose-dependent fashion, can potently inhibit the growth of primitive high proliferative potential colony-forming cells (HPP-CFCs) stimulated by multiple cytokine combinations. Using agonistic antibodies to the p55 and p75 TNF receptors or TNF alpha mutants specific for either of the two TNF receptors, we show that both receptors can mediate this inhibition. In contrast, the potent stimulation of interleukin-3 (IL-3) plus granulocyte-macrophage colony-stimulating factor (GM-CSF) induced HPP-CFC colony formation observed at low concentrations of TNF alpha (2 ng/mL) was only a p55-mediated event. Moreover, the stimulatory effects of TNF alpha on GM-CSF or IL-3-induced colony formation, as well as the inhibition of G-CSF-induced colony growth, were also exclusively signaled through the p55 TNF receptor. Taken together, our results suggest that the inhibitory effects of TNF alpha on primitive bone marrow progenitor cells are mediated through both p55 and p75 TNF receptors, whereas the p55 receptor exclusively mediates the bidirectional effects on more mature, single factor-responsive bone marrow progenitor cells as well as stimulation of IL-3 plus GM-CSF-induced HPP-CFC colony growth.

Jacobsen FW, Rusten LS, Jacobsen SE. 1994. Direct synergistic effects of interleukin-7 on in vitro myelopoiesis of human CD34+ bone marrow progenitors. Blood, 84 (3), pp. 775-779. | Show Abstract

Interleukin-7 (IL-7) is an important growth factor in B and T lymphopoiesis in mouse and human, whereas IL-7 has been regarded to lack proliferative effects on cells within the myeloid lineage. However, we have recently reported that IL-7 potently can enhance colony stimulating factor (CSF)-induced myelopoiesis from primitive murine hematopoietic progenitors, showing a novel role of IL-7 in early murine myelopoiesis. Using CD34+ human hematopoietic progenitor cells, we show here a similar role of IL-7 in human myelopoiesis, although interesting differences between the two species were found as well. Although purified recombinant human (rh)IL-7 alone did not induce any proliferation of CD34+ cells, IL-7 in a concentration-dependent manner enhanced the colony formation induced by all four CSFs up to threefold. Furthermore, stem cell factor (SCF)-induced granulocyte-macrophage (GM) colony formation was increased fourfold in the presence of IL-7. Single-cell cloning assays showed that these synergistic effects of IL-7 were directly mediated on the targeted progenitors, and that IL-7 increased the number, as well as the size of the colonies formed. Morphological examination showed that IL-7 affected the progeny developed from CD34+ cells stimulated by G-CSF or IL-3, increasing the number of CFU-M (colony forming unit-macrophage) and CFU-granulocyte-macrophage, whereas the number of CFU-granulocyte were unaltered.

Hestdal K, Jacobsen SE, Ruscetti FW, Longo DL, Boone TC, Keller JR. 1993. Increased granulopoiesis after sequential administration of transforming growth factor-beta 1 and granulocyte-macrophage colony-stimulating factor. Exp Hematol, 21 (6), pp. 799-805. | Show Abstract

Transforming growth factor-beta 1 (TGF-beta 1) is an inhibitor of the growth and differentiation of immature hematopoietic progenitors in vitro; however, we have demonstrated that TGF-beta 1 can promote granulopoiesis in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. We therefore examined the effect of the combined administration of TGF-beta 1 and GM-CSF in vivo. First, TGF-beta 1 enhanced the specific binding of GM-CSF (2.0-fold) on bone marrow cells, reaching a maximum 40 hours after injection, while the specific binding of interleukin-3 (IL-3) was unaffected. Using GM-CSF-specific binding to determine the optimal regimen for cytokine administration in vivo, we found that the administration of TGF-beta 1 and GM-CSF in sequence increased myelopoiesis. Total numbers of colony-forming units-granulocyte/macrophage (CFU-GM) and myeloblasts per femur were increased above the level obtained with the simultaneous injection of TGF-beta 1 plus GM-CSF, GM-CSF alone or TGF-beta 1 alone. Further, the sequential administration of TGF-beta 1 and GM-CSF resulted in enhanced numbers of mature granulocytes in both the bone marrow and peripheral blood. In contrast, the sequential combination of TGF-beta 1 and GM-CSF did not enhance the numbers or increase the recovery of erythroid cells in the bone marrow. These results show that TGF-beta 1 in vivo as in vitro has a multifunctional effect on bone marrow progenitors, and by using an optimal combination of TGF-beta 1 and GM-CSF in vivo, one can selectively increase both the central and peripheral granulopoietic compartments.

Dubois CM, Neta R, Keller JR, Jacobsen SE, Oppenheim JJ, Ruscetti F. 1993. Hematopoietic growth factors and glucocorticoids synergize to mimic the effects of IL-1 on granulocyte differentiation and IL-1 receptor induction on bone marrow cells in vivo. Exp Hematol, 21 (2), pp. 303-310. | Show Abstract

The mechanisms by which interleukin-1 (IL-1) stimulates hematopoiesis are not clear. We have previously shown that in vivo administration of IL-1 indirectly increases IL-1 receptor (IL-1R) expression on both immature and mature bone marrow (BM) cells, partly due to IL-1-induced hematopoietic growth factor (HGF) production. Because IL-1 also stimulates the hypothalamic pituitary-adrenal axis resulting in the production of glucocorticoids (GC), we assessed whether in vivo treatment with HGF and glucocorticoids upregulates IL-1R. Administration of IL-1 to adrenalectomized mice reduces by 53% IL-specific binding on light density bone marrow (LDBM) cells compared to sham-operated mice. The administration of dexamethasone (dex) alone induced only a slight increase in IL-1R expression but synergized with granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage CSF (GM-CSF), IL-3 and IL-6 to upregulate IL-1R expression. Flow cytometry analysis using the RB6-8C5 antibody, which is differentially expressed on myeloid cells, indicated that combined G-CSF and dex treatment acts to promote increased numbers of differentiated myeloid progenitors in the bone marrow. Autoradiographic analysis confirmed that while G-CSF and dex increased IL-1R expression on all myeloid cells, it was particularly pronounced for myelocytes, promyelocytes and metamyelocytes. These results suggest that the ability of IL-1 to enhance granulocyte differentiation in vivo is partly due to its ability to induce a cascade of cytokines and steroids which in turn regulate IL-1 receptor expression.

Jacobsen FW, Veiby OP, Skjønsberg C, Jacobsen SE. 1993. Novel role of interleukin 7 in myelopoiesis: stimulation of primitive murine hematopoietic progenitor cells. J Exp Med, 178 (5), pp. 1777-1782. | Show Abstract | Read more

Interleukin 7 (IL-7) has been demonstrated to be an important regulator of the growth of B and T cell precursors as well as mature T cells, whereas IL-7 has been reported to have no direct myeloproliferative effects. Here we show that IL-7 potently and directly enhances colony stimulating factor-induced myeloid colony formation from Lin-Sca-1+ murine bone marrow progenitor cells, increasing the cloning frequency up to ninefold and cell numbers up to 50-fold, without affecting their ability to differentiate along the myeloid lineages In contrast, IL-7 has no effect on proliferation of committed Lin- myeloid progenitors. Thus, in addition to its established lymphopoietic potential, this study implicates a novel role of IL-7 in early myelopoiesis.

Jacobsen SE, Ruscetti FW, Roberts AB, Keller JR. 1993. TGF-beta is a bidirectional modulator of cytokine receptor expression on murine bone marrow cells. Differential effects of TGF-beta 1 and TGF-beta 3. J Immunol, 151 (9), pp. 4534-4544. | Show Abstract

Transforming growth factor beta (TGF-beta), an immunomodulator, has inhibitory as well as stimulatory effects on bone marrow cells. In this study, we demonstrate that TGF-beta 1 also is a bidirectional modulator of CSF receptor expression on murine bone marrow cells. TGF-beta 1 up-regulated granulocyte-macrophage (GM)-CSF receptor expression in a time- and dose-dependent manner, with a maximum up-regulation of 64% by 48 h at 20 ng/ml. In contrast, TGF-beta 1 down-modulated IL-3 and CSF-1 receptor expression by 54 and 55%, respectively, by 24 h. TGF-beta 1 did not affect G-CSF receptor expression, in agreement with its inability to affect G-CSF-induced proliferation. The CSF receptor modulation induced by TGF-beta 1 preceded its effects on CSF-stimulated proliferation. The effects of TGF-beta on CSF receptor expression were isoform dependent, thus TGF-beta 3 was a 10-fold more potent inhibitor of both IL-3-induced colony formation and IL-3 receptor expression than TGF-beta 1, whereas TGF-beta 1 was a more potent stimulator of GM-CSF-stimulated colonies and GM-CSF receptor expression than TGF-beta 3. Therefore, the ability of TGF-beta to modulate the CSF receptor density/cell and/or the actual number of progenitors expressing CSF receptors directly correlates with the multifunctional effects of TGF-beta in hematopoiesis.

Ruscetti FW, Dubois CM, Jacobsen SE, Keller JR. 1992. Transforming growth factor beta and interleukin-1: a paradigm for opposing regulation of haemopoiesis. Baillieres Clin Haematol, 5 (3), pp. 703-721. | Show Abstract | Read more

The polypeptide cytokines, IL-1 and TGF-beta affect nearly every tissue and cell type in the body. IL-1 is the prototype of the proinflammatory molecule while TGF-beta is essentially anti-inflammatory. IL-1 is part of the cascade of cytokines that are produced during microbial invasion or bodily injury and enhance a variety of host responses, particularly in the immunological and haemopoietic systems, while TGF-beta acts as an inhibitor of these responses. At several levels, IL-1 and TGF-beta act in opposition to one another. IL-1 stimulates the expression of many genes in lymphoid and marrow stromal cells that stimulate haemopoietic cell growth and differentiation, while TGF-beta inhibits these IL-1 mediated effects. Also, TGF-beta stimulates secretion of the IL-1Ra. In addition, IL-1 induces the cell surface expression of cytokine receptors on lymphoid and haemopoietic cells, while TGF-beta dramatically inhibits the cell surface expression of these receptors, including the IL-1 receptor. Finally, IL-1 augments lymphoid and haemopoietic cell growth and TGF-beta potently inhibits this proliferation. The interactions of these cytokines serve to illustrate that the net balance of stimulatory and inhibitory signals determines the fate of a given cell which may be responsible for regulating homeostatic cell growth (Figure 1). Thus, the regulation of cytokine production and/or antagonism of their effects continues to be a therapeutic goal in the treatment of many diseases.

Hestdal K, Jacobsen SE, Ruscetti FW, Dubois CM, Longo DL, Chizzonite R, Oppenheim JJ, Keller JR. 1992. In vivo effect of interleukin-1 alpha on hematopoiesis: role of colony-stimulating factor receptor modulation. Blood, 80 (10), pp. 2486-2494. | Show Abstract

To determine the mechanism(s) by which interleukin-1 (IL-1) promotes granulopoiesis in vivo, we examined the effect of in vivo administration of IL-1 alpha on colony-stimulating factor (CSF) receptor expression on bone marrow cells (BMCs) and whether this directly correlated with progenitor cell responsiveness. Administration of IL-1 alpha to mice induced the upregulation of both granulocyte-macrophage-CSF (GM-CSF) and IL-3 receptors, which reached a maximum 24 hours after IL-1 alpha injection on unfractionated BMCs. This upregulation was more pronounced on the progenitor-enriched cell population (lineage-negative [Lin(-)]). The enhanced GM-CSF and IL-3 receptor expression directly correlated with enhanced IL-3- or GM-CSF-induced growth of colony-forming unit-culture (CFU-c) or CFU-mixture (CFU-Mix; colonies containing macrophages, granulocytes, and erythroid cells). In addition, the absolute number of high proliferative potential-colony-forming cells (HPP-CFC) was increased fivefold. In contrast, granulocyte-CSF (G-CSF)-specific binding on unfractionated BMCs was rapidly (4 hours) reduced after IL-1 alpha administration and returned to control levels by 24 hours. This reduction correlated with IL-1 alpha-induced margination of mature granulocytes (RBC-8C5hi cells), which express high levels of G-CSF receptors. IL-1 alpha treatment did not affect G-CSF receptor expression on Lin- cells. Pretreatment of mice with anti-type I IL-1 receptor antibody blocked the IL-1 alpha-induced upregulation of GM-CSF and IL-3 receptor expression on BMCs. Taken together, as one possible mechanism, IL-1 alpha in vivo may stimulate the expression of functional GM-CSF and IL-3 receptors on BMCs indirectly, and, in concert with the induction of circulating CSF levels, may account for the ability of IL-1 alpha to stimulate hematopoiesis in vivo.

Dubois CM, Ruscetti FW, Jacobsen SE, Oppenheim JJ, Keller JR. 1992. Hematopoietic growth factors upregulate the p65 type II interleukin-1 receptor on bone marrow progenitor cells in vitro. Blood, 80 (3), pp. 600-608. | Show Abstract

Having previously shown that interleukin-1 (IL-1) induces the expression of IL-1 receptors (IL-1Rs) on bone marrow (BM) cells in vivo through an indirect mechanism, we studied whether hematopoietic growth factors (HGFs) could induce the expression of IL-1R on BM cells in vitro. In vitro treatment of light-density murine BM (LDBM) cells with either IL-3, IL-6, granulocyte--colony-stimulating factor (CSF), or granulocyte-macrophage--CSF caused a 5- to 10-fold upregulation of IL-1R expression, whereas IL-1, IL-5, IL-7, and macrophage-CSF had no effect. Scatchard analysis showed one class of IL-1Rs on LDBM cells with an average of 66 +/- 20 sites per cells. After 24 hours of treatment with IL-3, the number of IL-1Rs increased to 413 +/- 125, without effecting the affinity. This effect required protein synthesis, but was independent of cell division. Purified lineage-negative progenitor cells (Lin-) did not express detectable levels of IL-1R, but 24 hours of treatment with IL-3, GM-CSF, and G-CSF stimulated IL-1--specific binding. Autoradiographic analysis of Lin- cells showed that IL-1R induction by IL-3 occurs on undifferentiated blast cells. Affinity labeling of Lin- cells treated with HGFs showed an increase in a 65-Kd IL-1 binding protein that did not bind or compete with an anti-type I IL-1R antibody, suggesting that these cells expressed type II IL-1R. These data suggest that IL-1 stimulation of myelopoiesis occurs by a mechanism involving IL-1R upregulation on hematopoietic progenitor cells by HGFs.

Keller JR, Jacobsen SE, Dubois CM, Hestdal K, Ruscetti FW. 1992. Transforming growth factor-beta: a bidirectional regulator of hematopoietic cell growth. Int J Cell Cloning, 10 (1), pp. 2-11. | Show Abstract | Read more

It is now apparent that the transforming growth factor-beta (TGF-beta) family of proteins has potent hematopoietic regulatory properties ranging from effects on the growth and differentiation of primitive stem cells to the differentiated functions of mature cells. Although most reports have described the inhibitory activities of TGF-beta on hematopoiesis, recent evidence supports the concept that TGF-beta can have both inhibitory and stimulatory actions on these systems. These differences depend on the differentiation state of the target cell and the other cytokines interacting with the cell. Furthermore, TGF-beta has direct bidirectional effects on cell surface expression of many cytokine receptors suggesting that it is part of the mechanism of action of TGF-beta. The major biological effect of TGF-beta on hematopoietic cell growth is the reversible inhibition of entry into the cell cycle. Importantly, the effect of in vivo administration of TGF-beta has mimicked the in vitro effects. Ultimately, well designed clinical trials will determine whether the exciting potential of TGF-beta can be used to treat or prevent myelotoxicity and other bone marrow dysfunctions.

Jacobsen SE, Ruscetti FW, Dubois CM, Wine J, Keller JR. 1992. Induction of colony-stimulating factor receptor expression on hematopoietic progenitor cells: proposed mechanism for growth factor synergism. Blood, 80 (3), pp. 678-687. | Show Abstract

In many cells systems, the cellular interaction between two or more humoral factors leads to a synergistic response in terms of cellular growth and function. In particular, the growth and differentiation of hematopoietic progenitor cells involves numerous synergistic interactions between colony-stimulating factors (CSFs) that individually stimulate hematopoiesis (granulocyte-CSF, granulocyte-macrophage-CSF, and interleukin-3 [IL-3]), as well as between these factors and other cytokines that individually have no proliferative effect on progenitor cell growth (IL-1 and IL-6). The present study investigated whether hematopoietic growth factor (HGF) synergy could be mediated by upregulation of CSF receptors. Synergistic effects on bone marrow (BM) progenitor cell colony formation, regardless of the combination of factors used, were consistently preceded by increased CSF receptor expression on highly enriched BM progenitor cells, but not on unfractionated BM cells. Induction of CSF receptors preceded detectable differentiation and did not require cell division because nocodazole, an inhibitor of mitosis, blocked CSF-mediated cell proliferation, but not receptor upregulation. Furthermore, combinations of cytokines that did not synergize also failed to affect the level of CSF receptors on BM progenitors. These results have led us to propose a model for HGF synergy whereby one mechanism of action the investigated synergistic cytokines might be the ability to induce increased expression of CSF receptors.

Jacobsen SE, Ruscetti FW, Dubois CM, Keller JR. 1992. Tumor necrosis factor alpha directly and indirectly regulates hematopoietic progenitor cell proliferation: role of colony-stimulating factor receptor modulation. J Exp Med, 175 (6), pp. 1759-1772. | Show Abstract | Read more

Tumor necrosis factor alpha (TNF-alpha) has been shown to both stimulate and inhibit the proliferation of hematopoietic progenitor cells (HPCs) in vitro, but its mechanisms of action are not known. We demonstrate that the direct effects of TNF-alpha on murine bone marrow progenitors are only inhibitory and mediated at least in part through downmodulation of colony-stimulating factor receptor (CSF-R) expression. The stimulatory effects of TNF-alpha are indirectly mediated through production of hematopoietic growth factors, which subsequently results in increased granulocyte-macrophage CSF and interleukin 3 receptor expression. In addition, the effects of TNF-alpha (stimulatory or inhibitory) are strictly dependent on the particular CSF stimulating growth as well as the concentration of TNF-alpha present in culture. A model is proposed to explain how TNF-alpha might directly and indirectly regulate HPC growth through modulation of CSF-R expression.

Ruscetti FW, Dubois C, Falk LA, Jacobsen SE, Sing G, Longo DL, Wiltrout RH, Keller JR. 1991. In vivo and in vitro effects of TGF-beta 1 on normal and neoplastic haemopoiesis. Ciba Found Symp, 157 pp. 212-227. | Show Abstract

TGF-beta 1 and TGF-beta 2 are equipotent selective inhibitors of murine and human haemopoiesis in vitro. Primitive haemopoietic cells such as the high proliferative potential progenitor cell and the colony-forming unit (CFU)-GEMM are directly inhibited by TGF-beta whereas the more differentiated CFU-G, CFU-M and CFU-E are not. Recombinant TGF-beta 1 administered intraperitoneally or intravenously to mice selectively inhibits haemopoietic colony formation in a time- and dose-dependent manner to the same extent as seen in vitro. The progenitors are reversibly prevented from entering the cell cycle. This inhibitory action of TGF-beta functions on at least two levels: (1) down-modulation of the cell surface expression of receptors for growth stimulatory molecules and (2) interference with the intracellular signalling pathways of these molecules. In addition, expression of TGF-beta receptors is regulated during cytokine stimulation of haemopoiesis. Neoplastic B lymphocytes can proliferate by escaping from a TGF-beta-mediated autocrine inhibitory loop. Activation signals (e.g. phorbol esters) inhibit tumour cell growth by stimulating active TGF-beta production and inducing cell surface expression of TGF-beta receptors. These results indicate that TGF-beta may be useful as a bone marrow protective and/or an antitumour agent.

Ruscetti FW, Jacobsen SE, Birchenall-Roberts M, Broxmeyer HE, Engelmann GL, Dubois C, Keller JR. 1991. Role of transforming growth factor-beta 1 in regulation of hematopoiesis. Ann N Y Acad Sci, 628 (1 Negative Regu), pp. 31-43. | Show Abstract | Read more

The data presented above suggest that one possible clinical use of TGF-beta would be to protect the bone marrow from the effects of myelosuppressive chemotherapeutic drugs by preventing entry or removing primitive stem cells from the cell cycle. It may also have the additional benefit of reducing the drug-induced neutrophil nadir by stimulating granulopoiesis. The availability of large quantities of recombinant TGF-beta will allow study of the pharmacokinetics with different routes of administration, dosage effects, and details of the pleiotropic effects on other cell systems. Experiments are in progress to determine whether TGF-beta will allow the delivery of higher amounts or more frequent doses of chemotherapeutic drugs and thus allow increased antitumor efficacy in tumor-bearing animals.

Hestdal K, Ruscetti FW, Ihle JN, Jacobsen SE, Dubois CM, Kopp WC, Longo DL, Keller JR. 1991. Characterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells. J Immunol, 147 (1), pp. 22-28. | Show Abstract

Murine bone marrow cells expressing the cell surface Ag RB6-8C5 were identified by fluorescence-activated cell-sorting analysis using a rat IgG mAb. The fluorescent intensity of RB6-8C5 was variable on bone marrow cells. This made it possible to separate bone marrow cells into distinct subpopulations, RB6-8C5neg, RB6-8C5lo, and RB6-8C5hi cells. Morphologic analysis of the sorted populations demonstrated that the Ag was expressed on myeloid cells. The expression of RB6-8C5 increases with granulocyte maturation, whereas expression is transient on cells in the monocytic lineage. The RB6-8C5hi sorted cells were enriched for end-stage neutrophils (75%), whereas the RB6-8C5lo sorted cells contained more immature myeloid cells and myelocytes (75%). Lymphocytes and macrophages were less than 5% in any RB6-8C5+ population, whereas the erythroid precursors were RB6-8C5neg. The colony forming unit culture (CFU-C) (greater than 90%) were found in the RB6-8C5neg and RB6-8C5lo populations, and all the CFU-granulocyte, erythroid, megakaryocyte, and macrophage (CFU-GEMM) and burst-forming units-erythroid (BFU-E) were in the RB6-8C5neg population. Granulocyte-macrophage-CSFR (GM-CSFR) and IL-1 alpha R were expressed on RB6-8C5hi bone marrow cells, whereas no receptors could be detected on RB6-8C5neg and RB6-8C5lo cells. The expression of the RB6-8C5 Ag can be induced on RB6-8C5neg cells in liquid culture by IL-3 and granulocyte-macrophage CSF. Thus, RB6-8C5 is a myeloid differentiation Ag whose expression can be regulated by cytokines.

Keller JR, Jacobsen SE, Sill KT, Ellingsworth LR, Ruscetti FW. 1991. Stimulation of granulopoiesis by transforming growth factor beta: synergy with granulocyte/macrophage-colony-stimulating factor. Proc Natl Acad Sci U S A, 88 (16), pp. 7190-7194. | Show Abstract | Read more

Transforming growth factor beta 1 (TGF-beta 1) is known to inhibit the growth of immature hematopoietic progenitor cells, whereas more mature, lineage-restricted progenitors are not inhibited. In contrast, in the presence of saturating concentrations of granulocyte/macrophage-colony-stimulating factor (GM-CSF), TGF-beta promoted a 3- to 5-fold increase in the number and size (greater than 0.5 mm) of bone marrow colonies in a dose-dependent manner with an ED50 of 10-20 pM; TGF-beta 1 alone had no effect. Morphological examination showed an increase in granulocyte colonies. In suspension cultures, TGF-beta 1 and GM-CSF stimulated an increase in total viable cells with markedly enhanced neutrophilic differentiation and a concomitant decrease in the number of monocytes/macrophages by day 6 in culture. Limiting dilution analysis demonstrated a 2- to 5-fold increase in the frequency of progenitor cells that responded to GM-CSF plus TGF-beta 1 vs. GM-CSF alone. Bone marrow progenitors obtained from mice 3 days after treatment with 5-fluorouracil responded to a combination of GM-CSF and TGF-beta 1, whereas either factor alone had no effect. A single-cell assay identified a progenitor cell that directly responded to TGF-beta and GM-CSF. TGF-beta increased the number of GM-CSF receptors on bone marrow cells. Thus, TGF-beta 1 can act as a bifunctional mediator of hematopoietic cell growth, and TGF-beta 1 and GM-CSF act together to stimulate granulopoiesis as measured by large granulocyte colony formation; the progenitor cell is tentatively designated granulocyte burst-forming unit.

Jacobsen SE, Keller JR, Ruscetti FW, Kondaiah P, Roberts AB, Falk LA. 1991. Bidirectional effects of transforming growth factor beta (TGF-beta) on colony-stimulating factor-induced human myelopoiesis in vitro: differential effects of distinct TGF-beta isoforms. Blood, 78 (9), pp. 2239-2247. | Show Abstract

Transforming growth factor-beta (TGF-beta) has potent antiproliferative effects on human hematopoietic progenitor cells. We report here that TGF-beta 1 and -beta 2 also exert bimodal dose-dependent stimulation of granulocyte-macrophage colony-stimulating factor (CSF) and granulocyte-CSF-induced day 7 granulocyte-macrophage colony-forming units. This increase in colony formation was restricted to low doses (0.01 to 1.0 ng/mL) of TGF-beta 1 and was due to increased granulopoiesis, showing that TGF-beta can affect the differentiation as well as the proliferation of hematopoietic progenitors. Furthermore, TGF-beta 3 was found to be a more potent inhibitor of hematopoietic progenitor cells than TGF-beta 1 and -beta 2. In contrast to the bidirectional proliferative effects of TGF-beta 1 and -beta 2, the effects of TGF-beta 3 on human hematopoiesis were only inhibitory, showing for the first time that TGF-beta isoforms differ not only in potencies but also with regard to the nature of the response they elicit.

Jacobsen SE, Ruscetti FW, Dubois CM, Lee J, Boone TC, Keller JR. 1991. Transforming growth factor-beta trans-modulates the expression of colony stimulating factor receptors on murine hematopoietic progenitor cell lines. Blood, 77 (8), pp. 1706-1716. | Show Abstract

Transforming growth factor beta (TGF-beta) is a potent and selective growth inhibitor of early hematopoietic progenitors and leukemic cells. The cellular mechanism(s) underlying this antiproliferative effect is, however, currently unknown. In the present study, we demonstrate that TGF-beta inhibits the expression of granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin 3 (IL-3), and granulocyte-CSF (G-CSF) receptors on murine factor-dependent and independent hematopoietic progenitor cell lines without a significant change in receptor affinity. A maximum reduction in GM-CSF receptor numbers of 65% to 77% was observed by 96-hour incubation with TGF-beta. The TGF-beta induced trans-down-modulation of GM-CSF receptors was prolonged, noncytotoxic but reversible, and not due to endogenous production of GM-CSF. The TGF-beta induced reduction in CSF receptor numbers preceded TGF-beta's growth inhibitory action. In addition, the ED50 (1 to 10 pmol/L) for TGF-beta's CSF receptor modulatory and antiproliferative effect was similar. The effect of TGF-beta on cell surface CSF receptor expression was specific, because the expression of other cell surface proteins (Ly 5 and Ly 17) was not affected by TGF-beta treatment, and because other growth inhibitors (tumor necrosis factor and interferon) did not affect CSF receptor expression. These data suggest that the downregulation of the growth of hematopoietic progenitor cells by TGF-beta involves reducing the cell surface expression on growth factor receptors.

1516